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Abstract—The modulated wideband converter (MWC) is a promising
spectrum blind, sub-Nyquist multi-channel sampling scheme for sparse
multi-band signals. In an MWC, the input analog signal is modulated by
a bank of periodic binary waveforms, low-pass filtered and then down
sampled uniformly at a low rate. One important issue in the design and
implementation of an MWC system is the selection of binary waveforms,
which impacts the stability of sparse reconstruction. In this paper, we
propose to construct the binary pattern with a circulant structure, in
which each row is a random cyclic shift of a single deterministic sequence
or a pair of complementary sequences. Such operators have hardware
friendly structures and fast computation in recovery. They are incoherent
with the FFT matrix and the corresponding sampling operators satisfy the
restricted isometry property with sub-optimal bounds. Some simulation
results are included to demonstrate the validity of the proposed sampling
operators.

I. INTRODUCTION

The modulated wideband converter (MWC) proposed by Mishali
and Eldar [1], [2] is a multi-channel, uniform sub-Nyquist sampling
system for sparse multi-band signals. It holds great potential in
applications such as communications, radar and sonar. Consider an
analog signal x(t) whose Fourier transform X(f) is bandlimited in[
− fNYQ

2
,
fNYQ

2

]
Hz. Assume that x(t) has only K active disjoint

frequency bands, each of which has a maximum bandwidth of B
Hz. x(t) is said to be a sparse multi-band signal if KB � fNYQ.
Figure 1 shows the implementation diagram of an m-channel MWC.
In each channel, the input signal is first modulated by a periodic
waveform pi(t), (i = 0, 1, · · ·m − 1), low-pass filtered by h(t)
and then decimated at the rate of 1/T to produce yi[n]. For ease
of presentation, we consider the basic configuration of an MWC in
which pi(t) is chosen as the sign alteration waveforms with period
of T [1]. Within each sampling period T , there are M intervals of
length T/M each and pi(t) takes the following form [2]

pi(t) = sik, k
T

M
≤ t ≤ (k + 1)

T

M
(1)

with sik ∈ {1,−1}. Reconstruction of x(t) from yi[n] (0 ≤ i ≤
m−1) exploits the recently emerged compressed sensing theory [3],
[4], which searches for the sparsest solution of a parameterized linear
equation. Details can be found in [5].

The selection of an m×M binary pattern S = {sik} (0 ≤ i ≤ m−
1, 0 ≤ k ≤M − 1) is crucial to the performance of an MWC. From
the theoretical perspective, S needs to offer stable reconstruction
performance. From the implementation perspective, it is desirable that
S requires the minimal number of hardware elements with flexible
choice of m and M . In [2], S is constructed from a full random
Bernoulli operator. Although such an operator offers near optimal
theoretical guarantee, it requires mM flip-flops to implement [2]. To
simplify the design, [2] proposed a mixed scheme, in which the first
r < m rows of S are Bernoulli matrices, and the remaining rows

Fig. 1. Implementation diagram of the modulated wideband converter [2].

are cyclic shifts of them. Such a scheme needs only rM flip-flops.
However, the theoretical performance guarantee of these operators
is unknown. Besides, simulation results in [2] indicate performance
degradation when r is small. In [6], deterministic operators using
maximal, Gold and Kasami codes have been used. However, these
codes only exist when M = 2β − 1 (β ∈ Z+), which is not flexible
for practical applications.

In this paper, we propose to construct S with a circulant structure,
where each of its row is obtained by random cyclic shift of a single
sequence (e.g., the m-sequence or the Legendre sequence) or a pair of
cyclic complementary sequences. Due to their circulant structures, the
proposed binary patterns are memory efficient with simple hardware
implementation. They also offer fast calculation in reconstruction
as the matrix multiplication requires only O(M logM) operations.
Moreover, they exist for a large choice of M . It can be shown
that the corresponding sampling operator satisfies the restricted
isometry property, which guarantees stable reconstruction in sparse
optimization. Experimental results have shown that the proposed
binary patterns can offer nearly the same performance as that of the
random Bernoulli operator at much lower complexity.

The rest of the paper is organized as follows. In Section II,
we briefly review mathematical formulation of the MWC system
and related theory in compressed sensing. Section III presents our
proposed binary patterns with circulant structure using a single
sequence or a pair of complementary sequences. Their restricted
isometry properties have been analyzed. Experimental results are
shown in Section IV, followed by conclusions in Section V.

Notations: Throughout this paper, vectors are denoted by boldfaced
lowercase letters and matrices by boldfaced uppercase characters. If
their sizes are not clear from the context, subscripts are provided. For
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a matrix A, A(i, :) denotes its i-th row and Ak,l represent its (k, l)-
th element. AT and AH denote the transpose and the Hermitian
transpose of A, respectively. I is the identity matrix and FM is an
M×M FFT matrix with Fk,l = e−j

2πkl
M . For an M×M matrix A,

µ(A) denotes its coherence parameter, i.e., the maximum magnitude
of its elements µ(A) = max0≤k,l≤M−1 |Ak,l|.

II. REVIEW

Consider an m-channel MWC system in Figure 1. Let y[n] denote
the m× 1 sampled vector

y[n] =
[
y0[n] y1[n] · · · yM−1[n]

]T
.

Define y(f) as its discrete-time Fourier transform, i.e., y(f) =∑∞
n=−∞ y[n]e−j2πfnT . Also, define zi(f) (i = 0, · · · ,M − 1) as

a slice of X(f) with bandwidth of 1
T

zi(f) = X(f + (i−M0)/T ), |f | ≤ 1

2T

in which M0 = bM/2c. Let z(f) denote the M × 1 vector z(f) =[
z0(f) z1(f) · · · zM−1(f)

]T , the input-output relation in an
MWC system can be written as [2]

y(f) = SF (PDz(f)) , |f | ≤ 1

2T
, (2)

where F is an M×M FFT matrix, P is a permutation matrix and D is
diagonal matrix which accounts for the decay of the Fourier transform
of pi(t) at high frequencies. In general, (2) is an under-determined
linear equation. But as X(f) is a multi-band sparse signal, z(f)
is a sparse vector with only K � M active elements. Based on
sparse reconstruction in compressed sensing theory [3], [4], x(t) can
be recovered from y[n] by first identifying the spectral support and
then reconstructed using a close-form expression [5].

Note that as PDz(f) is also a sparse vector with K non-zero
elements, we will only focus on the matrix product SF hereafter.
Let us consider the following simplified equation

v = SFu, (3)

in which u is an M×1 sparse vector with only K nonzero elements
and v is an m×1 vector. According to the compressed sensing theory
[3], [4], u can be reconstructed from v stably when the operator
Φ = 1√

mM
SF satisfies the restricted isometry property (RIP):

Definition 1 (RIP): An m×M matrix Φ with normalized columns
is said to satisfy the RIP with parameters (K, δ) (δ ∈ (0, 1)) if [3],
[4]

(1− δ)‖u‖2 ≤ ‖Φu‖2 ≤ (1 + δ)‖u‖2 (4)

for all K-sparse vectors of u.
It is well known if S is a full-random Bernoulli matrix, then Φ =
1√
mM

SF satisfies the RIP when m ≥ O(K log(M/K) [3], [4].
However, full random matrix incurs large memory in storage and
high cost in implementation. Another class of operators satisfying
the RIP is the randomly subsampled unitary matrix, as presented in
the following theorem [7].

Theorem 1 (RIP of a partial unitary matrix): Consider an m×M
matrix Φ = 1√

m
RΩU, where 1√

m
is a normalizing coefficient, RΩ is

a random sampling operator which selects m samples out of M ones
uniformly at random, and U is an M ×M unitary matrix satisfying
U∗U = MIM . Φ satisfies the RIP with high probability when [7]

M ≥ O
(
µ2(U)K log4 M

)
, (5)

in which µ(U) represents the maximum magnitude of the elements
in U, i.e., µ(U) = maxk,l |Uk,l|.

Note that the unitary property of U implies that 1 ≤ µ(U) ≤
√
M .

Hence, when µ(U) = O(1), we can get the sub-optimal bound
M ≥ O(K log4 M). In the next section, we will develop deter-
ministic binary sequnces for the MWC system based on the above
Theorem.

III. BINARY PATTERNS CONSTRUCTED FROM DETERMINISTIC

SEQUNCES

A. Construction from a single sequence

In this subsection, we consider S constructed from a partial
circulant matrix with the following form

S = RΩC (6)

where RΩ is a random subsampling operator, which selects m rows
out of M ones uniformly at random. C is a circulant operator that
can be expressed as

C =


c0 c1 · · · cM−1

cM−1 c0 · · · c1
...

...
. . .

...
c1 a2 · · · c0

 , (7)

in which c =
[
c0, c1, · · · , cM−1

]
is a deterministic sequence.

According to [2], such a sampling operator can be easily implemented
in hardware with only M flip-flops.

It is well known that an M ×M real-coefficient circulant matrix
can be factorized into

C =
1

M
Fdiag(ĉ)FH , (8)

in which F is the M ×M FFT matrix, and the 1 ×M row vector
ĉ =

[
ĉ0, ĉ1, · · · , ĉM−1

]
is the IFFT of c, i.e., ĉ = cFH . Hence, the

matrix product SF can be expressed as

SF = RΩFdiag(ĉ). (9)

To make use of Theorem 1, 1√
M

Fdiag(ĉ) needs to be a unitary
matrix, which implies that each element of ĉ has the same magnitude,
i.e., |ĉi| =

√
M . However, the only known binary sequence with

constant FFT magnitudes is c =
[
1 1 1 −1

]
or its cyclic

shift. Thus, we consider binary sequences whose FFT coefficients are
nearly flat. Two popular choices are the maximum length sequence
and the Legendre sequence [8]. Specifically,
• m-sequence: The maximum length sequence exists for M =

2β − 1 (β ∈ Z+). It can be easily implemented using β shift
registers and has found wide applications in spread-spectrum
communications and measurement of impulse response. If c is
a maximum length sequence, then |ĉi| can be expressed as

|ĉi| =
{

1 i = 0;√
M + 1 1 ≤ i ≤M − 1.

(10)

• Legendre sequence: A Legendre sequence c has length M (M
prime) and is given by the Legendre symbol [8]

c0 = 1,

ci =

{
1 if i is a square (mod M)
−1 if i is a non-square (mod M).

i > 1
(11)

For such a sequence, its IFFT coefficients ĉi (0 ≤ i ≤M − 1)
take the form of [8]

ĉ0 = 1,

ĉi =

{
1 + ci

√
M if M =1 (mod 4)

1 + jci
√
M if M =3 (mod 4)

(12)
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It is clear that both the maximum length sequence and the Legendre
sequence have a (nearly) flat spectrum except for ĉ0. By exploiting
such a property, we could arrive at the following theorem:

Theorem 2: Consider an sampling operator Φ = 1√
mM

SF, in
which F is an M ×M FFT matrix and S takes the form of (6),
where c is a maximum length sequence or the Legendre sequence.
For all K-sparse vector u =

[
u0, u1, · · · , uM−1

]
with u0 = 0, Eq.

(4) holds with high probability provided that m ≥ O(K log4 M).
The proof of the above theorem can be achieved by using (10),

(12) and Theorem 1. Details are omitted due to lack of space. Note
that when S is constructed from the maximum-length sequence or
the Legendre sequence, Theorem 2 implies that stable reconstruction
can be achieved as long as X(f) = 0 in |f | < 1

2T
. When X(f) is

non-zero in |f | < 1
2T

, we can first apply a lowpass filter with cut-off
frequency of 1

2T
to x(t) first and then sample it at the rate of 1/T .

Combined with the samples from MWC, x(t) can then be recovered.

B. Construction from a periodic complementary pair

Both the maximum-length sequence and the Legendre sequence
only exist for odd M . In this section, we consider the construction
of S when M is even. To this end, we first present the definition of
periodic complementary sequences (PCS) [9]–[11].

Definition 2: For a length-M , real-valued sequence c =[
c0, c1, · · · , cM−1

]
, its periodic autocorrelation Rc(l) (0 ≤ l ≤

M − 1) is given by

Rc(l) =

M−1∑
k=0

ck · c mod (k+l,M). (13)

Let a and b be a pair of length-M bipolar sequences. They are said
to form a periodic complementary pair (PCP) [9], [11] if

Ra(l) +Rb(l) = 0, 1 ≤ l ≤M − 1. (14)

a (or b) is called as a periodic complementary sequence (PCS).
It is known that periodic complementary sequences exist for

M = 2κ110κ226κ3 , M = 2κ134κ2 or M = 2κ150κ2 with κi
(1 ≤ i ≤ 3) being non-negative integers [11]. It is worth mentioning
that a periodic complementary sequence is also nearly flat in the FFT
domain. To see this, let a and b be a PCP and define â = aF and
b̂ = bF. From (14), it can be shown that [9]

|âk|2 + |b̂k|2 = 2M, 0 ≤ k ≤M − 1, (15)

in which âk and b̂k represent the k-th element of â and b̂, respec-
tively. Therefore,

|âk| <
√

2M and |b̂k| <
√

2M, 0 ≤ k ≤M − 1. (16)

In Theorem 3, we will use this property to derive the coherence
bound.

We now move on to consider the construction of S using two
circulant cores. Let a and b be a PCP of length-M/2 and define A
and B as two M

2
× M

2
circulant matrices whose first rows are a and

b, respectively. Eq. (14) implies that an M ×M operator G given
below is a binary orthogonal matrix [12]:

G =

[
A B
BT −AT

]
. (17)

Based on (17), we propose the following binary pattern S:

S = RΩGP̃, (18)

in which RΩ is the same as that in (6), G is given by (17) and P̃ is
a permutation matrix so that for a vector c =

[
c0, c1, , · · · , cM−1

]
,[

c0, · · · , cM/2−1, cM/2, · · · cM−1

]
P̃

=
[
c0, cM/2, c1, cM/2+1, · · · , cM/2−1, cM−1

]
,

i.e., it interleaves the first M/2 elements and the last M/2 elements
of c. The following Lemma presents some properties of the product
matrix G̃ = GP̃:

Lemma 1: Consider G̃ = GP̃, in which G and P̃ are the same
as in (18). G̃ has the following properties:
• G̃ is an orthogonal matrix satisfying G̃G̃ = MIM .
• G̃ has a circulant structure. Specifically, G̃(k, :) and G̃(k +
M/2, :) (1 ≤ k ≤M/2− 1) are respectively, the cyclic shift of
G̃(0, :) and G̃(M/2, :) to the right by displacement of 2k, i.e.,
the following relations hold

G̃k,l = G̃0, mod (2k+l,M) (19)

G̃k+M/2,l = G̃M/2, mod (2k+l,M). (20)

• Each row of G̃ is a periodic complementary sequence.
Sketch of the proof: The orthogonal property of G̃ is straight-

forward due to the orthogonal property of G and P̃. The circulant
structure of G̃ can be obtained from the definitions of G and P̃. To
prove that each row of G̃ is a PCS, we need the following two facts
[11]: (i) If a and b form a PCP, then their individual cyclic shifts
by any displacement l will also produce a PCP; and (ii) If a and b
form a PCP with length of M/2, by interleaving them, one can get
a new PCS with length of M .

By exploiting Lemma 1, eq.(16) and Theorem 1, the following
theorem can be derived:

Theorem 3: Consider an m×M matrix Φ = 1√
mM

SF, in which
S is given by (18) and F is the M ×M FFT matrix. Φ satisfies the
RIP with high probability when m ≥ O(K log4 M).

Detailed proof of Lemma 1 and Theorem 3 will be given in the
journal version of this paper. Note that due to the structure of G
in (17), only M flip-flops are required to implement S in (18).
Besides, unlike the m-sequence and the Legendre sequence, there
is no additional processing of the signal X(f) in |f | < 1

2T
when S

is constructed from a PCP.

IV. SIMULATIONS RESULTS

Extensive simulations have been carried out to evaluate the perfor-
mance of the proposed binary patterns. Due to lack of space, we only
present the results using the Legendre sequence. The experimental
setup is very similar to that in [2]. Specifically, the signal x(t) has
fNYQ = 10 GHz with 3 pairs of active bands (i.e, K = 6), each of
width B = 50 MHz, constructed as follows

x(t) =

3∑
i=1

√
EiBsinc(B(t− τi)) cos(2πfi(t− τi)), (21)

with sinc(x) = sin(πx)/(πx). The energy coefficients are Ei =
{1, 2, 3} and the time offsets are τi = {0.4, 0.7, 0.2}. The
frequency components fi is selected uinformly at random from
[fNYQ/2, fNYQ/2]. In [2], M is selected as 195. Here, we choose
M = 197, the smallest prime number greater than 195 so that the
Legendre sequence can be used. Just as in [2], we assume that x(t)
is corrupted by white Gaussian noise and 500 test signals have been
evaluated. The reconstruction algorithm is based on that proposed in
[5].

We first present the performance of Legendre sequence-based
sampling operators for different number of channels with m ranging
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from 20 to 100, and different input signal to noise ratio (SNR),
ranging from −20 dB to 30 dB. For comparison purposes, the
results of full-random binary pattern (i.e., when S is a Bernoulli
matrix) are also included, as shown in Figure 2. One can observe
that the proposed sampling operator using the Legendre sequence
offers very similar performance to that of the full binary sampling
operator at much lower implementation cost. Next, we compare our
proposed sampling operators with the mixed scheme proposed in [2].
Specifically, in the mixed scheme, the first r rows are full random
Bernoulli operators. Then, the i-th row (r ≤ i ≤ m − 1) is five
cyclic shifts (to the right) of the (i− r)-th row. This mixed scheme
requires rM flip-flops, while our proposed sampling operator needs
only M ones. Figure 3 presents the reconstruction performance of
different binary patterns with m = 49 and M = 197. As can
be seen, the proposed Legendre sequence-based sampling operator
provides slightly better reconstruction performance than the full-
random sampling operator when the SNR is below 0 dB. On the
other hand, the mixed scheme is inferior to the full random sampling
operator. In fact, substantial performance loss can be observed when
r is small (i.e., r = 4). These simulation results demonstrate the
effectiveness of using deterministic sequences for an MWC system.
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Fig. 2. Probabilities of successful support set recovery for different number
of channels m and different SNR levels. (a) Results when S is a full-random
Bernoulli operator. (b) Results when S is partial circulant matrix in (6) with
c being the Legendre sequence.

V. CONCLUSIONS

In this paper, we have proposed to use deterministic sequences for
modulated wideband converter in sub-Nyquist sampling of spectrally
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Fig. 3. Successful recovery rate using different 49 × 197 binary patterns
under different input SNR.

sparse signals. These include the maximum-length sequence, the Leg-
endre sequence and periodic complementary sequences, all of which
have nearly flat spectrum in the (I)FFT domain. The corresponding
binary operator S features hardware friendly implementation, fast
computation and near-optimal performance guarantees. Simulation
results show that despite their simplicity, the proposed sampling
operators can offer very similar performance as that of the full random
sampling operators, which imply they are promising in practical
applications of the MWC system.
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