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Abstract—The problem of phase retrieval, namely, recovery
of a signal from the magnitude of its Fourier transform is ill-
posed since the Fourier phase information is lost. Therefore, prior
information on the signal is needed in order to recover it. In
this work we consider the case in which the prior information
on the signal is that it is sparse, i.e., it consists of a small
number of nonzero elements. We propose GESPAR: A fast local
search method for recovering a sparse signal from measurements
of its Fourier transform magnitude. Our algorithm does not
require matrix lifting, unlike previous approaches, and therefore
is potentially suitable for large scale problems such as images.
Simulation results indicate that the proposed algorithm is fast
and more accurate than existing techniques. We demonstrate
applications in optics where GESPAR is generalized and used
for finding sparse solutions to sets of quadratic measurements.

I. INTRODUCTION

Recovery of a signal from the magnitude of its Fourier
transform, also known as phase retrieval, is of great interest in
applications such as optical imaging [1], crystallography [2],
and more [3]. Due to the loss of Fourier phase information, the
problem (in 1D) is generally ill-posed. A common approach
to overcome this ill-posedeness is to exploit prior information
on the signal. A variety of methods have been developed that
use such prior information, which may be the signal’s support,
non-negativity, or the signal’s magnitude [4], [5]. A popular
class of algorithms is based on the use of alternate projections
between the different constraints. In order to increase the
probability of correct recovery, these methods require the prior
information to be very precise, for example, exact/or “almost”
exact knowledge of the support set. Since the projections
are generally not onto convex sets, convergence to a correct
recovery is not guaranteed [6]. A more recent approach is
to use matrix-lifting of the problem which allows to recast
phase retrieval as a semi-definite programming (SDP) problem
[7]. The algorithm developed in [7] does not require prior
information about the signal but instead uses multiple signal
measurements (e.g., using different illumination settings, in an
optical setup).

In order to obtain more robust recovery without requiring
multiple measurements, we develop a method that exploits
signal sparsity. Existing approaches aimed at recovering sparse
signals from their Fourier magnitude belong to two main
categories: SDP-based techniques [8],[9],[10] and algorithms
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that use alternate projections (Fienup-type methods) [11].
Phase retrieval of sparse signals can be viewed as a special
case of the more general quadratic compressed sensing (QCS)
problem considered in [8]. Specifically, QCS treats recovery
of sparse vectors from quadratic measurements of the form
y; = x'A;x, i=1,...,N, where x is the unknown sparse
vector to be recovered, y; are the measurements, and A; are
known matrices. In (discrete) phase retrieval, A = FlTFl
where F; is the ¢th row of the discrete Fourier transform (DFT)
matrix.

A general approach to QCS was developed in [8] , in
the context of partially incoherent imaging, based on ma-
trix lifting. More specifically, the quadratic constraints where
lifted to a higher dimension by defining a matrix variable
X = xx'. The problem was then recast as an SDP involving
minimization of the rank of the lifted matrix subject to the
recovery constraints as well as row sparsity constraints on X.
An iterative thresholding algorithm based on a sequence of
SDPs was then proposed to recover a sparse solution. Similar
SDP-based ideas were recently used in the context of phase
retrieval [9],[10]. However, due to the increase in dimension
created by the matrix lifting procedure, the SDP approach is
not suitable for large-scale problems.

Another approach for phase retrieval of sparse signals is
adding a sparsity constraint to the well-known iterative error
reduction algorithm of Fienup [11]. In general, Fienup-type
approaches are known to suffer from convergence issues
and often do not lead to correct recovery especially in 1D
problems; simulation results show that even with the additional
information that the input is sparse, convergence is still prob-
lematic and the algorithm often recovers erroneous solutions.

In this paper we propose an efficient method for phase
retrieval which also leads to good recovery performance. Our
algorithm is based on a fast 2-opt local search method (see
[12] for an excellent introduction to such techniques) applied
to a sparsity constrained non-linear optimization formulation
of the problem. We refer to our algorithm as GESPAR: GrEedy
Sparse PhAse Retrieval. Sparsity constrained nonlinear opti-
mization problems have been considered recently in [13]; the
method derived in this paper is motivated — although different
in many aspects — by the local search-type techniques of
[13]. We demonstrate through numerical simulations that the
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proposed algorithm is both efficient and more accurate than
current techniques, and we present an example application in
optical imaging where a modified version of GESPAR is used.

II. PROBLEM FORMULATION

We are given a vector of measurements y € RY, that
corresponds to the magnitude of an NV point discrete Fourier
transform of a vector x € RY, ie.:

n
_ 2mj(m—1)(1—1)
Yy = E Tme N , l=1,...,N, (D
m=1

where x was constructed by zeros padding of a vector X €
R™ (n < N) with elements z;, ¢ = 1,2,...,n. In the
simulations section we considered the setting N = 2n which
corresponds to oversampling the DFT of x by a factor of 2.
In any case, we will assume that N > 2n — 1. This allows
to determine the correlation sequence of x from the given
measurements, as we elaborate on more below. Denoting by
F € CNV*N the DFT matrix with elements e‘wm%wil), we
can express y as y = |Fx|, where |-| denotes the element-wise
absolute value. The vector x is known to be s-sparse on its
support, i.e., it contains at most s nonzero elements in the first
n elements. Our goal is to recover x given the measurements
y and the sparsity level s.

The mathematical formulation of the problem that we con-
sider consists of minimizing the sum of squared errors subject
to the sparsity constraint:

: N
miny 370, (|Fix]? — y)?
s.t. lIxllo < s,

2
supp(x) € {1,2,....,n}, ?
x € RV,
where F; is the ith row of the matrix F, || - ||o stands for

the zero-“norm”, that is, the number of nonzero elements.
Note that the unknown vector x can only be found up to
trivial degeneracies that are the result of the loss of Fourier
phase information: circular shift, global phase, and signal
“mirroring”.

To aid in solving the phase retrieval problem we will rely
on the fact that the correlation sequence of x (the first n
components of x) can be determined from y. Specifically, let
Gm = Yot TiZigm,m = —(n —1),...,n — 1 denote the
correlation sequence. Note that {g,,} is a sequence of length
2n — 1. Since the DFT length N satisfies N > 2n — 1, we
can obtain {g,,} by the inverse DFT of the squared Fourier
magnitude y. Throughout the paper, we assume that no support
cancellations occur in {g,, }, namely, if ; # 0 and z; # 0 for
some i, j, then gj;_;| # 0. When the values of x are random,
this is true with probability 1. This fact is used in the proposed
algorithm in order to obtain information on the support of x.

The information on the support is used to derive two sets, J;
and J> from the correlation sequence {g,,} in the following
manner. Let J; be the set of indices known in advance to

be in the support, from the autocorrelation sequence. In the
noiseless setting which we consider, J; comprises two indices:

Jl = {lyimax}'

Due to the existing degree of freedom relating to shift-
invariance of x, the index 1 can be assumed to be in the
support, thereby removing this degree of freedom; as a conse-
quence, the index corresponding to the last nonzero element
in the autocorrelation sequence is also in the support, i.e.

imaz = 1 + argmax{i : g; # 0}.

We denote by J, the set of indices that are candidates for
being in the support, meaning the indices that are not known
in advance to be in the off-support (the complement of the
support). In other words, J contains the set of all indices
k € {1,2,...,n} such that g;_; # 0. Obviously, since we
assume that z;, = 0 for & > n, we have Jo C {1,2,...,n}.
Defining A; = R(F;)TR(F;) + S(F)TS(F;) € RY*N and
¢; = y? for i = 1,2,..., N, problem (2) along with the
support information can be written as

fx) = 2L (xTAx —¢;)?

ming

s.t. Ixllo < s, 3)
J1 C supp(x) C Jo,
x € RV,

which will be the formulation to be studied.

In the next section, we propose an iterative local-search
based algorithm for solving (3). We note that although in
the context of phase retrieval the parameters A;, J;, Jo have
special properties (e.g., A; is positive semidefinite of at most
rank 2, |J1] = 2), we will not use these properties in
the proposed method. Therefore, our approach is capable of
handling general instances of (3) with the sole assumption that
A; is symmetric for any ¢ =1,2,..., N.

III. GREEDY SPARSE PHASE RETRIEVAL (GESPAR)
ALGORITHM

In this section GESPAR is summarized. A more detailed
description can be found in [14].

A. The Damped Gauss-Newton Method

Before describing the algorithm, we begin by presenting the
damped Gauss-Newton (DGN) method [15],[16] that is in fact
the core step of our approach. The DGN method is invoked
in order to solve the problem of minimizing the objective
function f over a given support S C {1,2,...,n} (|S| = s):

min{ f(Ugz) : z € R}, “4)

where Ug € R™*# is the matrix consisting of the columns of
the identity matrix Iy corresponding to the index set .S. With
this notation, (4) can be explicitly written as

N
min {g(z) = Z(ZTUgAiUsz —¢) iz € RS} . 0O

=1
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Problem (5) is a nonlinear least-squares problem. A natural
approach for tackling it is via the DGN iterations. This
algorithm begins with an arbitrary vector z,. We choose it
to be an uncorrelated random Gaussian vector with zero mean
and unit variance. At each iteration, all the terms inside the
squares in g(z) are linearized around the previous guess.
The linearized term is then minimized to determine the next
approximation of the solution. Specifically, at each step we
pick yi to be the solution of

argmin {Zﬁil(z{,lBiqu —¢i +2(Bizk—1)" (y — Zkfl))Q} ;
Y

where B; = UgAiUS. This can be written as the linear least
squares problem

yi = argmin [My — b||3 (6)

with the ith row of M being M; = 2(B;z;_1)7, and with
b; = ¢; + Zg,lBiqu for + = 1,2,..., N. The solution yj
can therefore be calculated explicitly by the pseudo-inverse
of M, i.e. yx = (MTM)~'M”b. We then define a direction
vector as dy = yx —zx_1. This direction is used to update the
solution with an appropriate stepsize designed to guarantee
the convergence of the method to a stationary point of g(z).
The stepsize is chosen via a simple backtracking procedure.

B. The 2-opt Local Search Method

The GESPAR method consists of repeatedly invoking a
local-search method on an initial random support set. In
this section we describe the local search procedure. At the
beginning, the support is chosen to be a set of s random indices
chosen to satisfy the support constraints J; C .S C J5. Then,
at each iteration a swap between a support and an off-support
index is performed such that the resulting solution via the
DGN method improves the objective function. Since at each
iteration only two elements are changed (one in the support
and one in the off-support), this is a so-called “2-opt” method
(see [12]). The swaps are always chosen to be between support
indices corresponding to components in the current iterate with
small absolute value and off-support indices corresponding
to large absolute value of Vf. This process continues as
long as the objective function decreases and stops when no
improvement can be made.

C. The GESPAR Algorithm

The 2-opt method can have the tendency to get stuck at local
optima points. Therefore, our final algorithm, which we call
GESPAR, is a restarted version of 2-opt. The 2-opt method
is repeatedly invoked with different initial random support
sets until the resulting objective function value is smaller
than a certain threshold (success) or the number of maximum
allowed total number of swaps was passed (failure). A detailed
description of the method is given in Algorithm 1. One
element of our specific implementation that is not described
in Algorithm 1 is the incorporation of random weights added
to the objective function, giving randomly different weights to
the different measurements.

Algorithm 1 GESPAR

Input: (A;, ¢;, 7,ITER).

A, e RN*" j=1,2, ... N - symmetric matrices.
c €Ri=1,2,...,N.

T - threshold parameter.

ITER - Maximum allowed total number of swaps.

Output: x - an optimal (or suboptimal) solution of (3).

Initialization. Set C =0,k = 0.

+ Repeat
Invoke the 2-opt method with input (A, c;,4,8) and
obtain an output x and 7. Set x;, = x,C = C+ T
and advance k: k < k + 1.

Until f(x) < 7 or C > ITER.
o The output is x, where £ = argmin,,_, ;

,,,,,

IV. NUMERICAL SIMULATION

In order to demonstrate the performance of GESPAR, we
conducted a numerical simulation. The algorithm is evaluated
both in terms of signal-recovery accuracy and in terms of
computational efficiency.

A. Simulation details

We choose X as a random vector of length n. The vector
contains uniformly distributed values in s randomly chosen
elements. The NV point DFT of the signal is calculated, and
its magnitude is taken as y, the vector of measurements. The
2n — 1 point correlation is also calculated. In order to recover
the unknown vector x, the GESPAR algorithm is used with
7=10"% and T = 20000, as well as two other algorithms for
comparison purposes: An SDP based algorithm (Algorithm
2, [9].), and an iterative Fienup algorithm with a sparsity
constraint [11]. In our simulation n = 64 and N = 128.

B. Simulation Results

Signal recovery results of the numerical simulation are
shown in Fig. 1, where the probability for successful recovery
is plotted for different sparsity levels. Successful recovery
probability is defined as the ratio of correctly recovered signals
x out of 100 signal-simulations. In each simulation both the
support and the signal values are randomly selected. The three
algorithms (GESPAR, SDP and Sparse-Fienup) are compared.
The results clearly show that GESPAR outperforms the other
algorithms in terms of probability of successful recovery - over
90% successful recovery up to s = 15, vs. s =8 and s = 5
in the other two algorithms.

The average runtime performance of the three algorithms
was also compared for several sparsity levels (s = 3,5, 8), and
the results are shown in table I. GESPAR is shown to perform
much faster than the SDP based method, and comparable in
time to the Sparse-Fienup method, while outperforming both
in terms of signal recovery.
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Fig. 1. Recovery probability vs. sparsity (s)
TABLE 1
RUNTIME COMPARISON
[ [ SDP | Sparse-Fienup | GESPAR |
[ s=3 ] 1.32 sec [ 0.09 sec [ 0.12 sec |
[ s=5 ] 1.78 sec [ 0.12 sec [ 0.12 sec |
[ s=8 ] 3.85 sec [ 0.50 sec [ 0.23 sec |

V. APPLICATIONS IN OPTICS

As an example of one of the recent applications of GESPAR in
optical problems, where it is modified to handle more general
quadratic problems, we present Coherent Diffractive Imaging
(CDI) for sparsely varying objects. CDI [17] is an imaging
method used usually in the x-ray domain, where a small
object is illuminated by a coherent plane wave, and the far-
field diffraction intensity pattern is measured. The measured
intensity corresponds to the 2D Fourier transform of the object.
Discretization of the problem followed by appropriate scaling
of coordinates yields: y; = xT A;x, i =1,..., N, where y;
are the far-field intensity measurements, x is the object to be
recovered, and as before - A; = FZTFL We shall now focus
on an example where a dynamic scene is being imaged - e.g. a
moving object - so that sequential intensity patterns are being
captured at a certain frame rate. If the difference in the object
between the consecutive frames Ay = xj; — xj_1 IS sparse
(even if the object itself is not) - then recovering the frame
difference becomes the problem of finding a sparse solution
Ay to y}C = (xg_1 + Ar)TA¥(xx_1 + Ay). Given The result
of the previous frame xj_1,this is a quadratic problem in Ay,
and a modified version of GESPAR is used to solve it. An
example recovery is shown in Figure 2- where a comparison
to standard frame by frame Fienup HIO [4] recovery without
using sparsity is made. In this example there is added noise
(SNR=30) and the first frame is assumed to be known (e.g.
Yo is measured with a sufficient number of measurements).

VI. CONCLUSION

We proposed and demonstrated GESPAR - a fast algorithm
to recover a sparse vector from its Fourier magnitude. We
showed via simulations that GESPAR outperforms alternative

Frame #2

Fig. 2. Sparsely varying CDI example - True object (Left) is being recovered
from noisy Fourier magnitude (SNR=30), using sparsity of frame differences
(GESPAR - center) and without (Fienup HIO algorithm - right).

approaches suggested for this problem. The algorithm does not
require matrix-lifting, and therefore is potentially suitable for
large scale problems such as 2D images, and we demonstrate
its application for a more general quadratic imaging problem.
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