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Abstract—This paper is concerned with the possibility of ap-
proximating arbitrary operators by multipliers for Gabor frames
or more general Bessel sequences. It addresses the question of
whether sets of multipliers (whose symbols come from prescribed
function classes such as `2) constitute dense subsets of various
spaces of operators (such as Hilbert-Schmidt class). We prove a
number of negative results that show that in the discrete setting
subspaces of multipliers are usually not dense and thus too small
to guarantee arbitrary good approximation. This is in contrast
to the continuous case.

I. PRELIMINARIES

All Hilbert spaces are assumed to be separable and infinite-
dimensional.

A. Bessel sequences

Let H be a Hilbert space with inner product, linear in the
first argument, denoted by 〈·, ·〉. A sequence (fn), n ∈ N,
of elements of H is called a Bessel sequence if there exists
a constant B > 0 such that

∑
n∈N |〈h, fn〉|2 ≤ B‖h‖2 for

all h ∈ H . Any such number B is called a Bessel bound of
the Bessel sequence, the smallest such constant the optimal
Bessel bound. If a Bessel sequence satisfies additionally the
analogous inequality from below, i.e. there exists a constant
A > 0 such that

∑
n∈N |〈h, fn〉|2 ≥ A‖h‖2 for all h ∈ H , then

the sequence is called a frame for H . Prominent examples of
Bessel sequences are orthonormal systems, which are Bessel
sequences with Bessel bound 1. For a Bessel sequence (fn),
the analysis operator C : H → `2, h 7→ Ch := (〈h, fn〉)n∈N,
and the synthesis operator D : `2 → H , c = (cn) 7→ Dc :=∑
n∈N cnfn (the series converges in the norm topology of H),

are well-defined and adjoint to each other: C = D∗.
A useful characterization of Bessel sequences is the follow-

ing (cf. [4]):

Lemma I.1. Let (fn) be a sequence in H and (en) be an
arbitrary orthonormal basis. Then (fn) is a Bessel sequence
if and only if there exists a bounded operator T ∈ B(H) with
fn = Ten for all n ∈ N. The optimal Bessel bound B is given
by B = ‖T‖2B(H).

We will often use the following basic fact about Bessel
sequences (see e.g. [4]):

Lemma I.2. Let (fn) be a Bessel sequence with Bessel bound
B. Then, for all n ∈ N,

‖fn‖ ≤
√
B.

B. Time-frequency analysis

In the Hilbert space L2(R), define the translation operator
Txf(t) = f(t − x) and the modulation operator Mωf(t) =
e−2πiωtf(t) (for f ∈ L2 and x, ω ∈ R). These are unitary
operators on L2. They combine to form the time-frequency
shift π(x, ω) = MωTx. The short-time Fourier transform
(STFT) of f with window g is defined as the bilinear time-
frequency distribution

Vgf(x, ω) =

∫
R
f(t)g(t− x)e−2πiωt dt = 〈f, π(x, ω)g〉.

If (xn, ωn), n ∈ N, is a discrete subset of R2 and h ∈ L2, then
the family of functions (π(xn, ωn)h) is called a Gabor system.
If a Gabor system constitutes a Bessel sequence or a frame
for L2, we speak of a Bessel Gabor system or Gabor frame,
respectively. Another important time-frequency distribution is
the (cross) Wigner distribution of f and g:

W (f, g)(x, ω) =

∫
R
f(x+

t

2
)g(x− t

2
)e−2πiωt dt.

It is related to the STFT via the formula W (f, g)(x, ω) =
2e4πiωxVg̃f(2x, 2ω) with g̃(t) = g(−t). Both STFT and
Wigner distribution are in L2(R2) if f and g are in L2(R).
Both can be defined for larger classes of functions or even
distributions for f and g. The Wigner distribution is associated
to the Weyl calculus: every continuous operator T : S →
S ′ from Schwartz class S to the tempered distributions S ′
can be described in the form 〈Tf, g〉 = 〈σ,W (g, f)〉 for
f, g ∈ S, with a suitable unique (distributional) Weyl symbol
σ ∈ S ′(R2). If T is a Hilbert-Schmidt operator, then one has
σ ∈ L2(R2). For all of these facts and many more we refer
to [6].

C. Compact and Schatten class operators

A bounded operator T : H → H is compact if the
image of any bounded sequence under T contains a conver-
gent subsequence. A compact operator always has a spectral
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representation T (·) =
∑
k sk(T ) 〈·, φk〉ψk with suitably cho-

sen orthonormal systems (φk), (ψk) and a unique sequence
(sk(T )) with s1(T ) ≥ s2(T ) ≥ . . . ≥ 0, k ∈ N. The
sequence (sk(T )) is the sequence of singular values of T .
The operator belongs to Schatten p-class Sp(H), 1 ≤ p <∞,
if
∑
k |sk(T )|p < ∞. These are Banach spaces with norm

‖T‖Sp = ‖(sk(T ))‖p = (
∑
k |sk(T )|p)

1/p. S2(H) is also
called Hilbert-Schmidt class, S1(H) trace class. We use the
notation S∞(H) to denote the set B(H) of all bounded
operators on H , and S0(H) = K(H) to denote the set of
all compact operators on H . For more information, refer to
e.g. [5] or [7].

II. BESSEL MULTIPLIERS

Definition II.1. Let (fn) and (gn) be Bessel sequences in H
and m = (mn) ∈ `∞. The Bessel multiplier with symbol m
(associated to the sequences (fn) and (gn)) is defined as the
linear operator on H given by

A(fn),(gn)(m)(h) :=
∑
n

mn〈h, fn〉gn, h ∈ H.

In order to simplify notation, we will usually suppress the
dependence on the Bessel sequences (fn) and (gn) and simply
write A(m) instead of A(fn),(gn)(m).

We cite without proof several results from [1].

Lemma II.2. Let (fn) and (gn) be Bessel sequences with
Bessel bounds BF and BG, respectively. If (mn) ∈ `∞, then
A(m) is a well-defined bounded operator on H with norm
‖A(m)‖B(H) ≤

√
BFBG ‖m‖∞.

Lemma II.3. Let (fn) and (gn) be Bessel sequences with
Bessel bounds BF and BG, respectively. If (mn) ∈ `1, then
A(m) is a trace class operator on H with norm ‖A(m)‖S1 ≤√
BFBG ‖m‖1.

Lemma II.4. Let (fn) and (gn) be Bessel sequences with
Bessel bounds BF and BG, respectively. If limn→∞mn = 0,
i.e. m ∈ c0(N), then A(m) is a compact operator.

From Lemma II.2 and Lemma II.3, the following is easily
proved by interpolation:

Lemma II.5. Let (fn) and (gn) be Bessel sequences with
Bessel bounds BF and BG, repsectively. If m ∈ `p(N),
1 ≤ p < ∞, then A(m) is a Schatten p-class operator, and
‖A(m)‖Sp ≤

√
BFBG ‖m‖p.

Table I summarizes these results.

Symbol Bessel Multiplier

`∞(N) B(H) = S∞(H)

c0(N) = `0(N) K(H) = S0(H), compact operator

`p(N), 1 ≤ p <∞ Sp(H), Schatten class operator

TABLE I
BESSEL MULTIPLIERS WITH DIFFERENT SYMBOLS

See also the paper [3], which contains somewhat related
results for Gabor multipliers.

III. BEREZIN TRANSFORM

Definition III.1. Let (fn) and (gn) be Bessel sequences in H
and T ∈ B(H). The Berezin transform of T (associated to
the sequences (fn) and (gn)) is defined as the function on N
given by

B(fn),(gn)(T )(n) := 〈Tfn, gn〉, n ∈ N.

In order to simplify notation we will usually suppress the
dependence on the Bessel sequences (fn) and (gn) and simply
write B(T ) instead of B(fn),(gn)(T ).

Lemma III.2. Let (fn) and (gn) be Bessel sequences with
Bessel bounds BF and BG, respectively. Then the Berezin
transform B(T ) is bounded, hence in `∞(N), and

‖B(T )‖∞ ≤
√
BFBG ‖T‖B(H).

Proof: We have

|B(T )(n)| ≤ ‖T‖B(H)‖fn‖‖gn‖ ≤ ‖T‖B(H)

√
BF
√
BG

by Lemma I.2, for all n ∈ N.
For later use, we calculate the Berezin transform of a rank-

one operator.

Corollary III.3. Let φ, ψ ∈ H and T : H → H , h 7→ 〈h, φ〉ψ
a rank-one operator. Then

B(T )(n) = 〈fn, φ〉〈ψ, gn〉.

We collect further mapping properties of the Berezin trans-
form.

Lemma III.4. Suppose T ∈ B(H) is a compact op-
erator and (fn) and (gn) are Bessel sequences. Then
limn→∞ |B(T )(n)| = 0, i.e. B(T ) ∈ c0(N).

Proof: Since fn
w−⇀ 0 for n→∞, we have ‖Tfn‖ → 0

for n→∞. Together with Lemma I.2 this yields

|〈Tfn, gn〉| ≤ ‖Tfn‖‖gn‖ → 0, for n→∞.

Lemma III.5. Let (fn) and (gn) be Bessel sequences with
Bessel bounds BF and BG, respectively. Let T be a Schatten
class operator, with 1 ≤ p < ∞. Then the Berezin transform
B(T ) is in `p(N), and

‖B(T )‖p ≤
√
BFBG ‖T‖Sp .

Proof: Let (en) be an arbitrary orthonormal basis for H .
By Lemma I.1, there are bounded operators R and S in B(H)
such that fn = Ren and gn = Sen for all n and ‖R‖B(H) ≤√
BF and ‖S‖B(H) ≤

√
BG. Hence

〈Tfn, gn〉 = 〈TRen, Sen〉 = 〈S∗TRen, en〉

for all n. The operator T̃ = S∗TR is again in Sp, so(∑
n

|B(T )(n)|p
) 1

p

=

(∑
n

|〈T̃ en, en〉|p
) 1

p

≤ ‖T̃‖Sp .
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Since

‖T̃‖Sp ≤ ‖S∗‖B(H)‖T‖Sp‖R‖B(H) ≤ ‖T‖Sp

√
BFBG,

the proof is finished.
Table II summarizes these results.

Operator Berezin transform

B(H) = S∞(H) `∞(N)
K(H) = S0(H), compact operator c0(N) = `0(N)
Sp(H), 1 ≤ p <∞, Schatten class `p(N)

TABLE II
BEREZIN TRANSFORM OF DIFFERENT OPERATORS

Suggested by the results given above, it becomes obvious
that the concept of Bessel multiplier and the Berezin transform
are dual to each other.

The following theorem gives the connection between the
Berezin transform and Bessel multipliers.

Theorem III.6. Let m = (mn) ∈ `p(N), 1 ≤ p ≤ ∞, and
T ∈ Sq , with q the conjugate exponent to p, i.e. 1

p + 1
q = 1.

Then
〈A(m), T 〉Sp,Sq = 〈m,B(T )〉`p,`q .

Proof: For the moment, let (ek) be an arbitrary orthonor-
mal basis of H . Then the left hand side can be written as

〈A(m), T 〉 =
∑
k

〈A(m)(ek), T ek〉.

Inserting A(m) =
∑
nmn〈·, fn〉gn yields

〈A(m), T 〉 =
∑
k

∑
n

mn〈ek, fn〉〈gn, T ek〉. (∗)

The right hand side gives

〈m,B(T )〉 =
∑
n

mn〈gn, T fn〉

=
∑
n

mn

∑
k

〈T ∗gn, ek〉〈ek, fn〉

by Parseval’s equality. Thus

〈m,B(T )〉 =
∑
n

∑
k

mn〈ek, fn〉〈gn, T ek〉. (∗∗)

Comparing (∗) and (∗∗), we see that the claimed equality is
proved, if we can justify the change of order of summation
in the double sum. In order to do so, we examine the
corresponding double sum of the absolute values

S :=
∑
n

∑
k

|mn||〈ek, fn〉||〈gn, T ek〉|.

Consider the case p = 1 (i.e. m ∈ `1 and T ∈ S∞ = B(H)).
Then

S ≤
∑
n

|mn|
(∑

k

|〈ek, fn〉|2
) 1

2
(∑

k

|〈T ∗gn, ek〉|2
) 1

2

≤
∑
n

|mn|‖fn‖‖T ∗gn‖

≤
√
BFBG ‖m‖1‖T‖B(H) <∞.

If 1 < p ≤ ∞, then 1 ≤ q <∞ and T is a compact operator
in Sq . As such, it has a spectral representation

T =
∑
k

λk〈·, σk〉τk

with orthonormal bases (σk) and (τk), and λk ≥ 0 with∑
k λ

q
k = ‖T‖qSq . Choose the particular orthonormal basis

(ek) = (σk). Then Tek = Tσk = λkτk for all k, and thus

S =
∑
n,k

|mn||λk||〈σk, fn〉||〈gn, τk〉|

≤
(∑
n,k

|mn|p|〈σk, fn〉||〈gn, τk〉|
) 1

p×

(∑
n,k

|λk|q|〈σk, fn〉||〈gn, τk〉|
) 1

q

.

These two sums can be estimated, the first as∑
n,k

|mn|p|〈σk, fn〉||〈gn, τk〉|

≤
∑
n

|mn|p
(∑

k

|〈σk, fn〉|2
) 1

2
(∑

k

|〈gn, τk〉|2
) 1

2

≤
√
BFBG ‖m‖pp

and the second similarly as∑
n,k

|λk|q|〈σk, fn〉||〈gn, τk〉|

≤
(∑

k

λqk

)√
BF ‖σk‖

√
BG‖τk‖

=
√
BFBG ‖T‖qSq .

So, finally, we have for 1 < p ≤ ∞

S ≤
√
BFBG ‖m‖p‖T‖Sq <∞.

Since in every case S < ∞, Fubini’s theorem yields the
desired conclusion, the equality of (∗) and (∗∗).

Corollary III.7. (1) Let A : `∞ → B(H) and B : S1 → `1.
Then A = B∗ is the Banach space adjoint.

(2) Let A : c0 → K(H) and B : S1 → `1. Then B = A∗.
(3) Let A : `p → Sp, 1 ≤ p < ∞, and B : Sq → `q , with

1 < q ≤ ∞ the conjugate exponent. Then B = A∗.

Proof: Observe that B(H) = (S1)∗ and `∞ = (`1)∗ in
case (1), S1 = (K(H))∗ and c0 ⊆ `∞ with `1 = (c0)

∗ in
case (2), and Sq = (Sp)∗ and `q = (`p)∗ in case (3). The
statements then follow immediately from Theorem III.6.

IV. (NON-)DENSITY RESULTS

In this section we investigate whether a given operator on
H can be approximated by a Gabor multiplier with respect
to various norms. In particular, we would like to understand
when the set of Gabor multipliers (associated to a fixed pair
of Gabor systems) is dense in B(H) or in Sp(H) (if ever).

In order to examine such density properties, we employ
some well known results from functional analysis. Precisely,
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we use the following facts ([5]):
Let X,Y be Banach spaces, T : X → Y be a bounded
operator and let T ∗ : Y ∗ → X∗ be the (Banach space) adjoint
operator.
• T ∗ is one-to-one on Y ∗, if and only if the range of T is

dense in Y with respect to the norm topology on Y .
• T is one-to-one on X , if and only if the range of T ∗ is

dense in X∗ with respect to the weak* topology on X∗.
To understand when the mapping a → A(a) has dense

range, it suffices, in view of Theorem III.6 and its corollary,
to check when the Berezin transform B is one-to-one.

Lemma IV.1. Let a, b > 0 and assume that (fn,m) =
(π(an, bm)f) and (gn,m) = (π(an, bm)g) are Gabor systems,
f, g ∈ L2(R). Let (z, ν) ∈ R2 and T = π(z, ν) be the
corresponding time-frequency shift. Then

B(T )(n,m) = e2πi(anν−bmz)V (g, f)(z, ν)

for all n,m ∈ Z.

Corollary IV.2. Let (fn,m) = (π(an, bm)f) and (gn,m) =
(π(an, bm)g) be Bessel Gabor systems. If there exists a point
(z, ν) ∈ R2 such that V (g, f)(z, ν) = 0, then the Berezin
transform B : B(L2)→ `∞ is not one-to-one.

Proof: We have T = π(z, ν) 6= 0 in B(L2), but B(T ) = 0
by the preceding lemma.

For the particular case of Hilbert-Schmidt operators, we
have the following negative result:

Theorem IV.3. Let (fn,m) and (gn,m) be Bessel Gabor
systems. Then the range of A : `2 → S2 is not a norm-dense
subspace of Hilbert-Schmidt class. There are thus Hilbert-
Schmidt operators on L2(R) that cannot be approximated in
Hilbert-Schmidt norm by Gabor multipliers (with a given fixed
pair of Gabor systems).

Proof: In view of Corollary III.7, it suffices to show that
B : S2 → `2 is not one-to-one. Let T ∈ S2. Now note that
there is a bijective correspondence between Hilbert-Schmidt
operators and Weyl symbols in L2(R2). Thus there exists a
unique Weyl symbol σ ∈ L2(R2) such that

〈Tφ, ψ〉 = 〈σ,W (ψ, φ)〉

for all φ, ψ ∈ L2(R). Thus

B(T )(n,m) = 〈σ,W (gn,m, fn,m)〉
= 〈σ,W (π(an, bm)g, π(an, bm)f)〉
= 〈σ, T(an,bm)W (g, f)〉.

Observe that W (g, f) ∈ L2(R2). As is well-known, a discrete
countable family of translates of a function F ∈ L2(R2) is
never complete, thus

U := span{T(an,bm)W (g, f) | n,m ∈ Z}

is a proper closed subspace of L2(R2). Choose 0 6= σ ∈ U⊥.
Then the corresponding Hilbert-Schmidt operator T satisfies
B(T )(n,m) = 〈σ,W (gn,m, fn,m)〉 = 0 for all n,m ∈ Z, thus

B(T ) = 0, but T 6= 0. Hence B : S2 → `2 is not one-to-one.

We can extend this result to the cases 1 ≤ p < 2.

Theorem IV.4. Let (fn,m) and (gn,m) be Bessel Gabor
systems and 1 ≤ p < 2. Then the range of A : `p → Sp

is not a norm-dense subspace of the Schatten class Sp.

Proof: Let 2 < q ≤ ∞ be the conjugate exponent to p.
Observe that S2 ⊆ Sq ⊆ S∞. By Theorem IV.3, the Berezin
transform B : S2 → `2 is not one-to-one, hence, a fortiori, the
Berezin transform B : Sq → `q is not one-to-one, either. By
Corollary III.7, this is equivalent to the range of A : `p → Sp

not being norm-dense.
For the cases 2 < p <∞, we conjecture analogous results.
For the case p = ∞, we have the following result (whose

proof we omit for lack of space):

Theorem IV.5. Let (fn,m) and (gn,m) be Bessel Gabor
systems. Then there exists an operator R ∈ B(L2) and a
constant δ > 0 such that

‖R−A(m)‖B(L2) ≥ δ

for all m ∈ `∞. In particular, the range of A : `∞ → B(L2)
is not a norm-dense subspace of B(L2).

One can take for R the Fourier transform, fractional Fourier
transforms or any other operator that incorporates time-
frequency shifts of arbitrarily large size.

V. CONCLUSION

Our results show that subsets of Gabor multipliers with
symbols in `p-spaces are not dense in the respective Schatten
classes, but span proper subspaces. There exist thus operators
in these Schatten classes that cannot be approximated arbitrar-
ily well by multipliers in the respective Schatten norm. This is
in sharp contrast to the case of continuous (STFT) multipliers,
as shown in [2]. For approximation of bounded operators in
operator norm, however, the negative result shown in this paper
also holds analogously in the continuous case.
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