
Tracking Dynamic Sparse Signals with Kalman
Filters: Framework and Improved Inference

Evripidis Karseras , Kin Leung and Wei Dai
Department of Electrical and Electronic Engineering, Imperial College, London, UK

{e.karseras11, kin.leung, wei.dai1}@imperial.ac.uk

Abstract—The standard Kalman filter performs optimally for
conventional signals but tends to fail when it comes to recovering
dynamic sparse signals. In this paper a method to solve this prob-
lem is proposed. The basic idea is to model the system dynamics
with a hierarchical Bayesian network which successfully captures
the inherent sparsity of the data, in contrast to the traditional
state-space model. This probabilistic model provides all the
necessary statistical information needed to perform sparsity-
aware predictions and updates in the Kalman filter steps. A set
of theorems show that a properly scaled version of the associated
cost function can lead to less greedy optimisation algorithms, un-
like the ones previously proposed. It is demonstrated empirically
that the proposed method outperforms the traditional Kalman
filter for dynamic sparse signals and also how the redesigned
inference algorithm, termed here Bayesian Subspace Pursuit
(BSP) greatly improves the inference procedure.

I. INTRODUCTION

The Kalman filter has been the workhorse approach in the
area of linear dynamic system modelling in both practical
and theoretic scenarios. The escalating trend towards sparse
signal representation has rendered this estimator to be useless
when it comes to tracking dynamic sparse signals. It is easy
to verify that the estimation process behind the Kalman filter
is not fit for sparse signals. Intuitively, the Gaussian prior
distribution placed over the system’s observations does not
place any sparsity constraints over the space of all possible
solutions.

The Kalman filter was externally modified in the bibli-
ography to admit sparse solutions. The idea in [1] and [2]
is to enforce sparsity by thresholds. Work in [3] adopts a
probabilistic model but signal amplitudes and support are
estimated separately. Finally, the techniques presented in [4]
use prior sparsity knowledge into the tracking process. All
these approaches typically require a number of parameters to
be pre-determined. It also remains unclear how these methods
perform towards model and parameter mismatch.

For a single time instance of the sparse reconstruction
problem, the Relevance Vector Machine (RVM) introduced
in [10] was used with great success in Compressed Sens-
ing applications [5] and basis selection [6]. The hierarchical
Bayesian network behind the RVM achieves highly sparse
models for the observations not only providing estimates for
sparse signals but on their full posterior distributions as well.
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This is of great importance since it provides all the necessary
statistical information to use in the prediction step of the
tracking process. Additionally, the inference procedure used
in this framework allows for automatic determination of the
active components hence the need for a pre-determined level
of sparsity is eliminated. This is an appealing attribute for an
on-line tracking algorithm.

In this work the aforementioned Bayesian network is em-
ployed to extend the state-space model adopted in the tra-
ditional Kalman filter. This way the problem of modelling
sparsity is tackled efficiently. The resulting statistical infor-
mation from the inference procedure is then incorporated in
the Kalman filter steps thus producing sparsity-aware state
estimates.

A set of theorems dictate that a proper scaling of the cost
function associated with the inference procedure can lead to
more efficient inference algorithms. The techniques initially
proposed are greedy methods at heart. By scaling the cost
function with the noise variance, and by using knowledge
gained from well known compressed sensing algorithms, it
is possible to redesign these methods to admit better quali-
ties. The gains are two fold. Firstly, the improved inference
mechanism bears far better qualities than the one previously
proposed. Secondly, the proposed method outperforms the
traditional Kalman filter in terms of reconstruction error when
it comes to dynamic sparse signals.

In Section II we present the basic idea for amalgamating the
Bayesian network of the RVM in the Kalman filter, termed
here Hierarchical Bayesian Kalman filter (HB-Kalman). In
Section III we present as set of theorems and explain the
motivation to improve upon previous techniques. Additionally
we provide the steps for a revised inference algorithm based
on the Subspace Pursuit (SP) reconstruction algorithm in [8],
termed here Bayesian Subspace Pursuit (BSP). In Section IV
we demonstrate the performance of the proposed methods in
some synthetic scenarios.

II. HIERARCHICAL BAYESIAN KALMAN FILTER

The system model is described by the following equations:

xt = Ftxt−1 + zt, (1)
yt = Φtxt + nt. (2)

where vectors xt,yt denote the system’s state and observa-
tion respectively. The state innovation and observation noise
processes are modelled by zt and nt respectively.
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We assume that signal xt ∈ Rn is sparse in some domain.
which is considered to remain the same at all time instances
(e.g the frames of a video are sparse in the wavelet domain).
This allows to set the state transition matrix Ft equal to the
unitary matrix I . Equation (1) becomes:

xt = xt−1 + zt

As in the standard Kalman filter we adopt the Gaus-
sian assumption so that: p(zt) = N (0,Zt), p(nt) =
N
(
0, σ2I

)
; and p(xt|xt−1) = N (xt−1,Zt) and p (yt|xt) =

N
(
Φxt, σ

2I
)
. At each time instance, the Kalman filter in-

volves the prediction step where the parameters of p(xt|yt−1)
are calculated, while the update step evaluates those of
p(xt|yt). The advantages of the standard Kalman filter include
the ability to track the full statistics, and that the mean squared
error solution coincides with the maximum posterior solution
which has a closed form. The major issue when applying the
filter to dynamic sparse signals, is that the solution is typically
not sparse. This drawback is due to the fact that in the standard
approach, the covariance matrix Zt is priorly given. Variants
of the Kalman filter such as the non-linear Kalman filter also
suffer because of the special nature of the of the non-linearities
associated with sparse reconstruction.

To alleviate this problem, the key idea behind Sparse
Bayesian Learning (SBL) [10] is employed. As opposed to
the traditional Kalman filter where the covariance matrix Zt
of zt is given, here it is assumed that the state innovation
process is given by:

zt ∼ N
(
0,A−1t

)
,

where A = diag (α) = diag ([α1, · · · , αn]t), and the hyper-
parameters αi are unknown and have to be learned from yt.
To see how this promotes a sparse solution, let us drop the
subscript t for simplicity. Then it holds that:

p (x|α) = N
(
0,A−1

)
=

n∏
i=1

N
(
0, α−1i

)
.

By driving αi = +∞ it means that p (xi|αi) = N (0, 0);
hence it is certain that xi = 0. What remains is to find the max-
imum likelihood solution of α for the given observation vector
y. The explicit form of the likelihood function p

(
y|α, σ2

)
was

derived in [10] and a set of fast algorithms to estimate α and
consequently z and x are proposed in [9].

Finally the principles behind the Kalman filter and SBL
are put together. Similar to the standard Kalman filter, two
steps, prediction and update, need to be performed at each
time instance. In the prediction step, one has to evaluate:

µt|t−1 = µt−1|t−1, Σt|t−1 = Σt−1|t−1 +A−1t ,

yt|t−1 = Φtµt|t−1, ye,t = yt − yt|t−1.

where the notation t|t − 1 means prediction at time instance
t for measurements up to time instance t − 1. In the update
step, one computes:

Kt = Σt|t−1Φ
T
t (σ2I + ΦtΣt|t−1Φ

T
t )−1,

µt|t = µt|t−1 +Ktye,t, Σt|t = (I −KtΦt)Σt|t−1.

Differently from the standard Kalman filter, one has to
perform the additional step of learning the hyper-parameters
αt. From Equation (2) we get ye,t = Φtzt + nt where a
sparse zt is preferred to produce a sparse xt. Following the
analysis in [10] and [9], maximising the likelihood p(yt|αt)
is equivalent to minimising the following cost function:

L(αt) = log |Σα|+ yTe,tΣ−1α ye,t, (3)

where Σα = σ2I + ΦtA
−1
t ΦT

t . The algorithms described in
[9] can be applied to estimate αt. Note that the cost function
L(α) is not convex. The obtained estimate αt is generally sub-
optimal and details on the estimation of the globally optimal
αt are given in the next section.

III. BAYESIAN SUBSPACE PURSUIT

Here we discuss the performance guarantees for a single
time instance of the inference procedure. For convenience,
subscript t is dropped and focus is turned to Equation (2)
where x|α ∼ N

(
0,A−1

)
. This was analysed in [6] for the

purpose of Basis Selection. It had also been proven in [6] that
a maximally sparse solution of y = Φx attains the global
minimum of the cost function. However, the analysis did not
specify the conditions to avoid local minima. By contrast, we
provide a more refined analysis. Due to space constraints, only
the main results are presented.

We follow [6] by driving the noise variance σ2 → 0. The
following Theorem specifies the behaviour of the cost function
L (α).

Theorem 1. For any given α, define the set I , {1 ≤ i ≤
n : 0 < αi <∞}. Then it holds that:

lim
σ2→0

σ2L (α) =
∥∥∥y −ΦIΦ

†
Iy
∥∥∥2
2
, (4)

where ΦI is a sub-matrix of Φ formed by the columns indexed
by I, and Φ†I denotes the pseudo-inverse of ΦI .

Furthermore, if |I| < m and y ∈ span (ΦI), then L (α)→
−∞ and σ2L (α)→ 0 as σ2 → 0.

Two observations can be obtained: (a) the scenarios anal-
ysed in [6] can be seen as special cases of Theorem 1
where L (α) → −∞; and (b) a proper scaling of the cost
function gives the squared `2-norm of the reconstruction error.
Reconstruction is then equivalent to recovering a support set
that minimises the reconstruction distortion. This principle is
the same as the one behind many greedy algorithms such as the
OMP [7] and SP [8]. Theorem 1 suggests such connections.

According to Theorem 1 the key quantities concerning
the algorithms described in [9] must be scaled by the noise
variance. The original formulae can be found in [9] while the
revised ones are given below:

σ−2Σx =
(
σ2AI + ΦT

IΦI
)−1

, µx = σ−2ΣxΦ
T
I y,

σ2C−1−i = I −ΦI−i
(
σ2AI−i + ΦT

I−iΦI−i
)−1

ΦT
I−i,

s̄i = σ2si = φTi
(
σ2C−1−i

)
φi, q̄i = σ2qi = φTi

(
σ2C−1−i

)
y.

Subscript I denotes the set of indices for which 0 < αi <
+∞. The notation I − i means removal of index i from I.
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Subsequently formula [9, Equation (20)] for the optimal αi
given all other αj , j 6= i, becomes:

αi =
s̄2i

q̄2i − σ2s̄i

Finally the scaled cost function becomes:

L̄ = σ2L = σ2 log
∣∣σ2I + ΦIA

−1
I ΦT

I
∣∣

+yT
(
I −ΦI(σ2AI + ΦT

IΦI)−1ΦT
I
)
y.

Let us clarify the importance of using the scaled quantities.
Assume that σ2 = 0. It is then easy to show that the original
formulae in [9] result in poor performance. Scaling the cost
function (and consequently these quantities) is necessary when
we want to account for a given noise variance. This may
seem irrelevant but in many tracking applications the noise
floor is assumed to be estimated in some way or provided
by the manufacturer for specific devices. The initial work
in [10] provides the formula to infer the noise level from
the observations. The scaled versions of the aforementioned
quantities can still be applied if desired.

We now have a better understanding of the inference pro-
cedure but it still remains unclear what the selection criterion
for the basis functions should be. In [9] selection is based
on the value of αi which maximises the difference ∆L in the
likelihood function, while algorithms such as the OMP and SP
make decisions on different grounds. The following Theorem
sheds some light on this matter.

Theorem 2. Assume the noiseless setting y = Φx where
Φ ∈ Rm×n and φTi φi = 1 for all 1 ≤ i ≤ n. Furthermore
assume that t = max

∣∣φTi φj∣∣ for 1 ≤ i 6= j ≤ n. Then
an algorithm similar to the one in [9] based on one of the
following criteria recovers all s-sparse signals exactly given
the sufficient condition t < 0.375/s; (a) the maximum σ2∆L,
(b) the maximum xi or (c) the minimum αi.

Theorem 2 is the starting point for redesigning the infer-
ence algorithm. Based on the scaled quantities we can re-
derive the algorithm in [9] termed Fast Marginal Likelihood
Maximisation (FMLM). It is possible to have variants with
OMP-like performance guarantees based on different criteria
as Theorem 2 suggests. Actually the inference algorithm then
greatly resembles the OMP; where the basis functions are
recovered sequentially with decreasing order of correlation
with the residual signal. For brevity we only present the
version based on maximising xi hence the algorithm is termed
FMLM-xi. The steps are given in Algorithm 1.

Theorem 3. Assume that the same conditions hold as in
Theorem 2. An algorithm similar to the one in [9] based on
the less greedy criterion of maximum θi = q̄i, recovers all s-
sparse signals exactly given the sufficient condition t < 0.5/s.
The algorithm presented in Algorithm 2 recovers all s-sparse
signals exactly if matrix Φ satisfies the RIP with parameter
δ3s < 0.205.

Theorem 3 suggests further improvements to the perfor-
mance guarantees, to match those of the OMP by altering

Algorithm 1 FMLM-xi
Input: Φ,y, σ2

Initialise:
- T̂ = {index i ∈ [1, n] for maximum |φTi y|}.

Iteration:
- Calculate values of αi and [µx]i for i ∈ [1, n] \ T̂ .
- T ′ = T̂ ∪ {index i corresponding to the maximum value
of [µx]i for i /∈ T̂}.
- Calculate values αi for i ∈ T ′.
- T̃ = {i ∈ T ′ : 0 < αi < +∞}.
- If |L̄T̃ − L̄T̂ | = 0 then compute σ−2Σx, µx for T̃ and
quit. Set T̂ = T̃ and continue otherwise.

Output:
- Estimated support set T̃ and sparse signal x̃ with |T̃ |
non-zero components, x̃T̃ = µx.
- Estimated covariance matrix σ−2Σx.

Algorithm 2 Bayesian Subspace Pursuit
Input: Φ,y, σ2

Initialise:
- T̂ = {index i ∈ [1, n] for minimum αi = 1

|φT
i y|
}.

Iteration:
- Store αmax = arg maxi∈T̂ |αi|.
- Calculate values αi and θi = q̄2i − s̄i for i ∈ [1, n].
- Calculate values tθi>0 = |{i ∈ [1, n] : θi > 0}| and
tαi≤amax = |{i ∈ [1, n] : |αi| ≤ amax}|.
- If tθi>0 = 0 then s = tαi≤amax + 1 else
s = tθi>0 + tαi≤amax

.
- T ′ = T̂ ∪ {indices corresponding to s smallest values of
αi for i ∈ [1, n]}.
- Compute σ−2Σx and µx for T ′.
- T̃ = {indices corresponding to s largest non-zero values
of |µx| for which 0 < αi < +∞}.
- If |L̄T̃ − L̄T̂ | = 0 then quit. Otherwise set T̂ = T̃ and
continue.

Output:
- Estimated support set T̃ and sparse signal x̃ with |T̃ |
non-zero components, x̃T̃ = µx.
- Estimated covariance matrix σ−2Σx for T̃ .

the optimisation criterion. Also, results from [8] motivate us
to extend the FMLM procedure to a less greedy optimisation
procedure by borrowing ideas from the SP algorithm. The SP
selects a subset of basis functions at each time instance based
also on correlation maximisation, but adds a backtracking step
so as to retain only the sparse components with the largest
magnitudes. The redesigned algorithm termed here Bayesian
Subspace Pursuit is described in Algorithm 2.

IV. EMPIRICAL RESULTS

A. Single Time Instance

We concentrate on the performance of the algorithms for
a single time instance and for σ2 = 0. The algorithms under
comparison are the FMLM algorithm as originally presented
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Figure 1. Exact reconstruction rates for m = 128, n = 256

in [9], the variants based on the scaled quantities; FMLM-
xi, FMLM-αi, FMLM-δli, FMLM-θi and the BSP. The
experiment is as follows:

1) Generate Φ ∈ R128×256 with i.i.d entries from
N
(
0, 1

m

)
.

2) Generate T uniformly at random so that |T | = K.
3) Choose values for xT from N (0, 1).
4) Compute y = Φx and apply a reconstruction algo-

rithms. Compare estimate x̂ to x.
5) Repeat experiment for increasing values of K and for

100 realisations.
The results from this procedure are depicted in Figure 1. The
first critical observation is that the original FMLM performs
poorly when σ2 = 0 due to the improperly scaled cost
function. The three scaled variants of FMLM based on the
criteria mentioned in Theorem 2 perform - within computa-
tional accuracy - in the same manner. We observe the increase
in performance for FMLM-θi, a consequence of altering the
selection criterion to θi = q̄i. Even though changing the
criterion gives theoretically better performance as Theorem 3
suggests, empirically this gain is not great. By redesigning the
inference algorithm based on ideas from the SP we are able
to achieve far better performance, as the curve for the BSP
algorithm shows.

B. Dynamic Sparse Signal

We now compare the proposed method, HB-Kalman filter
against the original Kalman filter. Signal xt ∈ Rn is assumed
to be sparse in its natural basis with support set S chosen uni-
formly at random from [1, n] where n = 256. The magnitudes
of the non-zero entries of xt evolve according to Equation II
with Zi = σ2

zI with σ2
z = 0.1. The simulation time for this

experiment was T = 200 time instances. At two randomly
chosen time instances: T = 50 and T = 150, a change in the
support of xt is introduced. A non-zero component is added
to the support of x50 and a non-zero component is removed
from the support of x150. Apart from these two time instances
the support of xt remains unchanged. At T = 1 the support
is initialised with K = 30 non-zero components. Observation
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Figure 2. Reconstruction error comparison for m = 128.

variance is set to σ2
n = 0.01 for the entire simulation time. We

compare the following techniques; the classic Kalman filter,
the HBK with FMLM-xi as the optimisation procedure and
the HBK with BSP.

In this scenario noisy measurements yt are taken by
choosing the design matrix Φt ∈ R128×256 as described in
subsection IV-A and is re-sampled at each time instance. The
number of observations m remains constant at each time
instance. In Figure 2 we primarily notice how the HBK
outperforms the original Kalman filter, direct consequence
of the sparse dynamic model. The HBK-BSP captures the
evolution in the support set with greater success due to the
improved optimisation algorithm.
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