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Abstract—Recovering signals that have sparse representations under a
given dictionary from a set of linear measurements got much attention in
the recent decade. However, most of the work has focused on recovering
the signal’s representation, forcing the dictionary to be incoherent and
with no linear dependencies between small sets of its columns. A series
of recent papers show that such dependencies can be allowed by aiming
at recovering the signal itself. However, most of these contributions focus
on the analysis framework. One exception to these is the work reported
in [1], proposing a variant of the CoSaMP for the synthesis model, and
showing that signal recovery is possible even in high-coherence cases. In
the theoretical study of this technique the existence of an efficient near
optimal projection scheme is assumed. In this paper we extend the above
work, showing that under very similar assumptions, a variant of IHT
can recover the signal in cases where regular IHT fails.

I. INTRODUCTION

Recovering a sparse signal from a given set of linear measurements
has been a major subject of research in recent years. In the basic
setup, an unknown signal x0 ∈ Rd passes through a given linear
transformation M ∈ Rm×d with an additive noise e ∈ Rm providing
a set of linear measurements y = Mx0+e. The signal x0 is assumed
to have a k-sparse representation α0 ∈ Rn under a given dictionary
D ∈ Rd×n, i.e. x0 = Dα0, ∥α0∥0 ≤ k and k ≪ d, where ∥·∥0 is
the “ℓ0-norm” that counts the number of non-zero entries in a vector.
The sparsity prior results with the following minimization problem

min
α

∥y −MDα∥2 s.t. ∥α∥0 ≤ k, (1)

in which we pursue the representation α in order to recover the
original signal x0 from y. Given a reconstructed representation α̂,
the estimation for the signal is simply given by x̂ = Dα̂.

Solving (1) is a NP-hard problem and many approximation tech-
niques has been proposed for it [2]. One of these is the iterative
hard thresholding (IHT) algorithm [3]. This approach, summarized
in Algorithm 1, recovers the representation in an iterative way
using two repeating steps: (i) Gradient step: moving in the optimal
gradient direction for minimizing ∥y −MDα∥2; (ii) Projection step:
ensuring that the representation estimate is k-sparse. The operator
supp(·, k) returns the support of the largest k elements in a given
vector and the subscript T for a vector/matrix means taking the
entries/columns corresponding to the indices in T .

In order to evaluate the performance of IHT, the restricted isometry
property (RIP) [4] of the matrix MD is used. A matrix A ∈ Rd×n

satisfies the RIP with a constant δk if for any k sparse vector α ∈ Rn

(1− δk) ∥α∥22 ≤ ∥MDα∥22 ≤ (1 + δk) ∥α∥22 . (2)

With this definition in hand it has been shown that if δ2k ≤ 1/4 or
δ3k ≤ 1/

√
3 then IHT recovers the representation stably, i.e.,

∥α̂IHT −α0∥2 ≤ cIHT ∥e∥2 , (3)

where cIHT > 2 is a function of δ2k and δ3k [3], [5], [6]. Note that with
no prior on the noise distribution only a stable recovery is guaranteed

Algorithm 1 Iterative hard thresholding (IHT)
Require: k,M,D,y where y = MDα0 + e, k is the cardinality

of α0 and e is an additive noise.
Ensure: α̂IHT: k-sparse approximation of α0.

Initialize representation α̂0 = 0 and set t = 0.
while halting criterion is not satisfied do

t = t+ 1.
Perform a gradient step: αg = α̂t−1+µtMD∗(y−MDα̂t−1)
Find a new support: T t = supp(αg, k)
Calculate a new representation: α̂t = (αg)T t .

end while
Form the final solution α̂IHT = α̂t.

with no noise reduction effect. The latter can be achieved by adding
an assumption on the noise distribution [7]. This work deals only
with the former case where e is an adversarial bounded noise.

Note that in the case where D contains k correlated columns we
have δk ≥ 1. Then the above recovery conditions fail and (3) does not
hold. The reason for this is that in the presence of linear dependencies
between a small group of columns from D, the representation is no
longer unique [8] and the solution of (1) is no longer stable [4].
Though the recovery of the representation is not achievable in the
presence of correlations within D, we should keep in mind that our
task is to estimate the signal and not the representation. Recovering
the wrong support of α, but one that is closely related to the original
signal may suffice for our needs.

This key point is contained in the union of subspaces literature
[9], [10], [11]. However, it has been pointed out more clearly in a
series of contributions for the analysis framework [12], [13], [14],
[15], [16], assuming a different sparse model. As such, correlations
in the analysis dictionary were found to pose no problem and it has
been demonstrated that such are even an advantage [14], [15], [16].

The analysis results serve as a clue that the same may happen in
the synthesis model when the signal is the objective. In particular,
the condition in [12] are presented in terms of the D-RIP, which is
a property of the measurement matrix M for the synthesis model.
However, as indicated in [15], the results in [12] essentially hold true
for signals emerging from the analysis model.

The work reported in [1] is very different from all the above, in
addressing the synthesis model, providing signal recovery guarantees
using the D-RIP. This work presents a modified version of CoSaMP,
Signal space CoSaMP (SSCoSaMP), that aims at recovering the
signal, showing empirically that unlike the regular CoSaMP, the
modified version gets a good recovery even in the presence of
linear dependencies in D. The authors of [1] use a similar proof
technique to the one in [15] that was derived for the analysis CoSaMP
(ACoSaMP). Just like [15], the work in [1] relies on the availability of
near-optimal projection (this property will be defined clearly in the
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next section). Another recent paper that exploits the D-RIP in the
context of the synthesis model is the one reported in [17], studying
the basic synthesis ℓ0-minimization problem.

In this work we continue with the same assumption as in [1] –
the existence of a near optimal projection scheme1 – and use the
D-RIP too. In Section II we present notations, and the definitions of
the D-RIP and the near-optimality of a projection. In Section III we
introduce the signal space IHT (SSIHT) method for signal recovery
and in Section IV we propose theoretical guarantees for it, relying on
ideas taken from [15]. The SSIHT emerges from IHT as SSCoSaMP
emerges from CoSaMP. The novelty of this work is by its theoretical
study which relies on [15] and differs from [1]. Note that the proof
technique used here can be adopted to develop new theoretical results
for SSCoSaMP that differ from those in [1] and resemble those of
ACoSaMP [15]. Section V presents some numerical results showing
the advantage of SSIHT over IHT for the task of signal recovery.

II. PRELIMINARIES

We start with the definition of the D-RIP. As indicated in [12],
many types of random matrices satisfy this property with a small δk2.

Definition 2.1: A matrix M obeys the D-RIP with a constant δDk ,
if δDk is the smallest constant that satisfies

(1− δDk ) ∥z∥22 ≤ ∥Mz∥22 ≤ (1 + δDk ) ∥z∥22 (4)

for any z ∈ Rd such that z = Dα and ∥α∥0 ≤ k.
Another definition we need is the one of a near optimal projection.

In SSIHT we face the following problem: Given a general vector
z ∈ Rd, we seek the closest vector to it, in the ℓ2-norm sense, that
has a k-sparse representation. Note that given a support set T , the
closest vector is computed simply by using an orthogonal projection
PT = DTD

†
T onto it. Thus, the problem of finding the closest vector

turns into the problem of finding its support, using the scheme

S∗
k(z) = argmin

T,|T |≤k

∥z−PT z∥22 , (5)

where the closest vector with k-sparse representation for z is simply
given by PS∗

k
(z)z. We should remark that for the task of projecting

a given representation vector to the same domain (k-sparse vectors),
a simple hard thresholding as done in IHT gives the ideal solution.
However, finding the optimal support in the signal case seems to be a
NP-hard problem as its equivalent form in analysis context is known
to be so [18]. Thus an approximation procedure is needed. For this
purpose we introduce the definition of a near-optimal projection [15].

Definition 2.2: A procedure Ŝk implies a near-optimal projection
PŜk(·) with a constant Ck if for any z ∈ Rd∥∥∥z−PŜk(z)z

∥∥∥2

2
≤ Ck

∥∥∥z−PS∗
k
(z)z

∥∥∥2

2
. (6)

In [1], a slightly different definition was used:
Definition 2.3: A procedure Ŝk implies a near-optimal projection

PŜk(·) with constants Ck,1 and Ck,2 if for any z ∈ Rd∥∥∥(PS∗
k
(z) −PŜk(z)

)z
∥∥∥
2

(7)

≤ min
{
Ck,1

∥∥∥PS∗
k
(z)z

∥∥∥
2
, Ck,2

∥∥∥z−PS∗
k
(z)z

∥∥∥
2

}
.

Having these definitions we recall the problem we aim at solving:

1Our projection definition follows the one in [15], which is slightly different
from the one used in [1].

2In this paper we shall use the brief notation δk to denote both RIP and
D-RIP, and the meaning should be understood from the context.

Definition 2.4 (Problem P): Consider a measurement vector y ∈
Rm such that y = Mx0 + e where x0 ∈ Rd has a k-sparse
representation under D, M ∈ Rm×d is a degradation operator and
e ∈ Rm is a bounded additive noise. The largest singular value of
M is σM and its D-RIP constant is δk. The dictionary D ∈ Rp×d

is given and fixed. A procedure Ŝk is assumed to be available. Our
task is to recover x0 from y. The recovery result is denoted by x̂.

The following guarantee has been proposed in [1] for SSCoSaMP.
Theorem 2.5 (Theorem 2.1 in [1]): Consider the problem P and

assume Ŝk implies a near optimal projection with constants Ck,1 and
Ck,2. After t iterations of SSCoSaMP, its signal estimate x̂t obeys∥∥x̂t − x0

∥∥
2
≤ c1

∥∥x̂t−1 − x0

∥∥
2
+ c2 ∥e∥2 , (8)

where c1 = ((2 + Ck,1)δ4k + Ck,1)(2 + Ck,2)
√

1+δ4k
1−δ4k

and c2 =
(2+Ck,2)((2+Ck,1)(1+δ4k)+2)√

1−δ4k
.

Assuming Ck,1 = 0.1 and Ck,2 = 1 like in Corollary 2.1 in [1], a
condition for c1 < 1 is δ4k < 0.096 which guarantees that after a
finite number of iterations we have

∥x̂SSCoSaMP − x0∥2 ≤ cSSCoSaMP ∥e∥2 , (9)

where cSSCoSaMP is a function of c1, c2 and δ4k. The bound in (9)
implies a stable recovery of SSCoSaMP.

In this paper we show that under similar assumptions on the near
optimality constant Ck of definition 2.2 and the maximal singular
value of M, σM, the condition δ2k < 0.289 guarantees a stable signal
reconstruction for SSIHT. Note that in the condition of SSCoSaMP,
two near optimality constants are involved. The second one is related
to Ck as both of them measure the projection error and it is easy to
show that they obey the inequality (Ck,2−1)2 ≤ Ck ≤ (1+Ck,2)

2.
The first constant Ck,1 measures the energy kept in the projection.
This constant’s relation to the other two depends on the initial norm
of the projected signal. Since there is no direct relation between Ck

and Ck,1, it is natural that another constant of the system would
appear in our recovery conditions and indeed σM takes this role.

The existence of a general near-optimal projection scheme for any
given dictionary is still an open problem and is left for future work.
It is likely that there are non-trivial examples for which an efficient
procedure exists as has been shown in [15] for the analysis case.
In practice, any sparse recovery algorithm can be used in order to
determine the support for the projection scheme. In this work we
use a simple thresholding rule: For a given signal z it chooses the
support to be the largest entries in D∗z. We show empirically that
with this scheme we recover signals using SSIHT that cannot be
recovered using the regular IHT. Note that thresholding does not have
any known (near) optimality guarantee except for unitary operators.

III. SIGNAL SPACE ITERATIVE HARD THRESHOLDING

SSIHT is presented in Algorithm 2. Its main difference from
the regular IHT is the projection scheme. As IHT works in the
representation domain, its projection is performed also there and as
mentioned in the previous section, the projection is optimal in this
case. For SSIHT that works in the signal domain no general projection
procedure with an optimality guarantee is known.

The stopping criterion and the step size can be selected in the same
way as in the regular IHT [19]. For the step size we consider three
options: (i) Constant step-size selection µt = µ in all iterations;
(ii) Optimal changing step-size selection µt in each iteration by
minimizing

∥∥y −Mx̂t
∥∥
2
; and (iii) Adaptive changing step-size
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selection that has a closed-form solution and uses

µt := argmin
µ

∥∥y −M(x̂t−1 + µPT̃M
∗(y −Mx̂t−1))

∥∥2

2
, (10)

where T̃ = T̂ t−1 ∪ Ŝk(M
∗(y −Mx̂t−1)). More details appears in

[15], [19]. In our theoretical study we analyze the first two options. In
the experimental part we use the third one as it works better than the
first, and approximates the second that has no closed-form solution.

Algorithm 2 Signal space iterative hard thresholding (SSIHT)
Require: k,M,D,y where y = MDα0 + e, k is the cardinality

of α0 and e is an additive noise.
Ensure: x̂SSIHT: k-sparse approximation of x0.

Initialize estimate x̂0 = 0 and set t = 0.
while halting criterion is not satisfied do
t = t+ 1.
Perform a gradient step: xg = x̂t−1 + µtM∗(y −Mx̂t−1)
Find a new support: T t = Ŝk(xg)
Project to get a new estimate: x̂t = DT tD†

T txg .
end while
Form the final solution x̂SSIHT = x̂t.

IV. ALGORITHMS GUARANTEES

A uniform guarantee for the idealized version of SSIHT that has an
access to the optimal projection and uses a constant step size µt = µ,
is presented in [11]. The work in [11] deals with a general union of
subspaces, A, where in our case A = {x|x = Dα, ∥α∥0 ≤ k}.
Using our notation Theorem 2 from [11] reads3:

Theorem 4.1 (Theorem 2 in [11]): Consider the problem P with
Ŝk = S∗

k and apply SSIHT with a constant step size µ. If 1+ δ2k ≤
1
µ
< 1.5(1− δ2k) then after a finite number of iterations t∗∥∥∥x̂t∗ − x0

∥∥∥
2
≤ c3 ∥e∥2 , (11)

where the constant c3 is a function of δ2k and µ.
In our work we extend the above in several ways: First, we refer

to the case where an optimal projection is not known, and show
that the same flavor guarantees apply for a near-optimal projection4.
The price we seemingly have to pay is that σM enters the game.
Second, we also consider the optimal step size and show that the
same performance guarantees hold true in that case.

Theorem 4.2: Consider the problem P and apply SSIHT with a
constant step size µ or an optimal changing step size. For any positive
constant η > 0, let b1 := η

1+η
and b2 :=

(Ck−1)σ2
Mb21

Ck(1−δ2k)
. Suppose b2

b21
<

1, 1
µ
≤ σ2

M and 1 + δ2k ≤ 1
µ
<

(
1 +

√
1− b2

b21

)
b1(1− δ2k). Then

for t ≥ t∗ ,
log

(
η∥e∥22
∥y∥22

)
log

(
(1+ 1

η
)2( 1

µ(1−δ2k)
−1)Ck+(Ck−1)(µσ2

M
−1)+

Ck
η2

) ,5

∥∥x̂t − x0

∥∥2

2
≤ (1 + η)2

1− δ2k
∥e∥22 . (12)

3Theorem 2 in [11] is more general and deals also with the case where Ŝk

is near-optimal up to an additive constant factor (in our definitions the factor
is multiplicative). The error bound in the theorem has an additional constant
factor that depends on the projection’s near-optimality additive constant.

4Our work in fact improves the condition of the idealized case in [11] to
be δ2k ≤ 1

3
instead of δ2k ≤ 1

5
.

5For an optimal changing step-size the theorem conditions turn to be b2
b21

<

1 and 1+ δ2k < (1+

√
1− b2

b21
)b1(1− δ2k) and we set µ = 1

1+δ2k
in t∗.

This theorem is a variant of Theorem 6.5 in [15] for AIHT and
Theorem 2.1 in [20] for IHT. If, for example, σ2

M = 5 and Ck =
1.05 then the conditions of Theorem 4.2 turn to be δ2k ≤ 0.289
as mentioned before. For a better understanding of the nature of the
theorem we refer the reader to the remarks after Theorems 6.2 and 6.5
in [15]. Briefly we comment on the selection of µ and η. For the step-
size selection, note that an optimal changing step-size has the same
theoretical guarantees as the optimal constant step-size µ = 1

1+δ2k
.

The advantage of the changing step-size method is that it does not
need to compute (or estimate) the value of δ2k. However, this comes
at the cost of an additional complexity. Regarding the constant η, it
gives a trade-off between satisfying the theorem conditions and the
amplification of the noise. In particular, one may consider that the
above theorem proves the convergence result for the noiseless case by
taking η to infinity. This result is included in Lemma 4.4, which we
present later, that guarantees in the case e = 0 that Mx̂t converges
geometrically to Mx0. Due to the uniqueness property that appears
in [17], this implies that x̂t converges to x0.

We prove the theorem by presenting two key lemmas. The proofs
rely on the ones in [15] that adopted ideas from [20] and [11]. Recall
that the iterative algorithm tries to reduce the objective

∥∥y −Mx̂t
∥∥2

2
over iterations t. Thus, the progress of the algorithm can be indirectly
measured by how much the objective

∥∥y −Mx̂t
∥∥2

2
is reduced at

each iteration t. The two lemmas that we present capture this idea.
The first lemma relates

∥∥y −Mx̂t
∥∥2

2
to

∥∥y −Mx̂t−1
∥∥2

2
and similar

quantities at iteration t−1. We remark that the constraint 1
µ
≤ σ2

M in
Theorem 4.2 may not be necessary and it is added only for having a
simpler derivation of the results in this theorem. Furthermore, this is a
very mild condition compared to 1

µ
<

(
1 +

√
1− b2

b21

)
b1(1− δ2k)

and can only limit the range of values that can be used with the
constant step size version of the algorithm.

Lemma 4.3: Consider the problem P and apply SSIHT with a
constant step size µ satisfying 1

µ
≥ 1+ δ2k or an optimal step size6.

Then, at the t-th iteration, the following holds:∥∥y −Mx̂t
∥∥2

2
−

∥∥y −Mx̂t−1
∥∥2

2
≤ Ck ∥y −Mx0∥22 (13)

−Ck

∥∥y −Mx̂t−1
∥∥2

2
+ (Ck − 1)µσ2

M

∥∥y −Mx̂t−1
∥∥2

2

+Ck

(
1

µ(1− δ2k)
− 1

)∥∥M(x̂t−1 − x0)
∥∥2

2
.

The proof of the above lemma is exactly the same as the proof
of Lemma 6.6 in [15] with the change that here we use the D-RIP
instead of the Ω-RIP and the near-optimal projection scheme for
synthesis instead of the one for analysis. The second lemma shows
that once the objective

∥∥y −Mx̂t−1
∥∥2

2
at iteration t − 1 is small

enough, then we are guaranteed to have small
∥∥y −Mx̂t

∥∥2

2
as well.

Given the presence of noise, this is quite natural; one cannot expect
it to approach 0 but may expect it not to become worse. Moreover,
the lemma also shows that if

∥∥y −Mx̂t−1
∥∥2

2
is not small, then the

objective in iteration t is necessarily reduced by a constant factor.
Lemma 4.4: Suppose that the same conditions of Theorem 4.2

holds true. If
∥∥y −Mx̂t−1

∥∥2

2
≤ η2 ∥e∥22, then

∥∥y −Mx̂t
∥∥2

2
≤

η2 ∥e∥22. Furthermore, if
∥∥y −Mx̂t−1

∥∥2

2
> η2 ∥e∥22, then∥∥y −Mx̂t

∥∥2

2
≤ c4

∥∥y −Mxt−1
∥∥2

2
, (14)

where c4 < 1 and

c4 :=

(
1 +

1

η

)2 (
1

µ(1− δ2k)
− 1

)
Ck+(Ck−1)(µσ2

M−1)+
Ck

η2
.

6For an optimal step size the bound is achieved with the value µ = 1
1+δ2k

.
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The Lemma’s proof is similar to the one of Lemma 6.7 in [15]. The
needed adaptations are similar to those done for Lemma 4.3. Having
the two lemmas above, the proof of the theorem is straightforward.

Proof of Theorem 4.2: Since x̂0 = 0, ∥y∥22 =
∥∥y −Mx̂0

∥∥2

2
.

Assuming that ∥y∥2 > η ∥e∥2 and applying Lemma 4.4 repeat-
edly, we obtain

∥∥y −Mx̂t
∥∥2

2
≤ max(ct4 ∥y∥22 , η

2 ∥e∥22). Since
ct4 ∥y∥22 ≤ η2 ∥e∥22 for t ≥ t∗, we have∥∥y −Mx̂t

∥∥2

2
≤ η2 ∥e∥22 (15)

for t ≥ t∗. If
∥∥y −Mx̂0

∥∥
2
= ∥y∥2 ≤ η ∥e∥2 then according to

Lemma 4.4, (15) holds for every t > 0. Finally, we observe∥∥x̂t − x0

∥∥2

2
≤ 1

1− δ2k

∥∥M(x̂t − x0)
∥∥2

2
(16)

and by the triangle inequality,∥∥M(x̂t − x0)
∥∥
2
≤

∥∥y −Mx̂t
∥∥
2
+ ∥e∥2 . (17)

By plugging (15) into (17) and then the resulting inequality into (16),
the claim of the Theorem follows. �

V. NUMERICAL PERFORMANCE

We turn to check numerically whether SSIHT can recover signals
in scenarios where IHT cannot. We perform a synthetic test similar to
the one in [17] for signals that are sparse under a dictionary which is
highly coherent and with linear dependencies between its columns.
We generate a dictionary D = [D1,D2] where D1,D2 ∈ Rd×d,
d = 200, D1 contains sparse columns with 2 non-zero entries which
are 1 or −1 with probability 0.5 and D2 contains columns which
are linear combinations of random 3 columns from D1 with random
zero-mean white Gaussian weights. Each entry of the measurement
matrix M ∈ Rm×d is distributed according to a normal Gaussian
distribution, where m=⌊γd⌋ and γ is the sampling rate – a value in the
range (0, 1]. We set k to be ⌊ρm⌋ (ρ ≪ 1) and measure the recovery
rate of the representation α and the signal x for various values of
γ ∈ {0.1, 0.2, . . . , 0.9} and ρ ∈ {0.01, 0.02, . . . , 0.05}. We compare
SSIHT also to SSCoSaMP, where both use projection by thresholding.
The adaptive changing step-size selection rule is used for IHT and
SSIHT. Similar to what is done in [15], by uniqueness conditions it
is better to apply the algorithms with sparsity k̃ = max(k,m/2).

Figure 1 presents the recovery performance over 100 realizations
per each parameter setting. As expected, IHT fails almost always
in recovering the signal since it focuses on the representation,
while SSIHT and SSCoSaMP succeed in several cases and their
performance are similar. At a first glance, some would think that the
SSIHT phase diagram implies that for a fixed k/m (e.g. 0.03) one
may improve the recovery result if he uses less samples, i.e. smaller
m/d. However, this observation misses the fact that for a fixed k/m,
k is reduced together with m. Note that the recovery results of SSIHT
and SSCoSaP can be improved by using other techniques for the
projection, rather than thresholding, as done in [1] for SSCoSaMP.

VI. CONCLUSION

In this paper we have proposed a variant of the IHT algorithm –
the Signal-Space IHT (SSIHT) – for recovering signals with sparse
representations under highly coherent dictionaries. We have shown
that IHT fails in recovering such signals, as it operates in the
representation domain. SSIHT, on the other hand, targets the signal. A
uniform recovery guarantee has been derived for the SSIHT, assuming
the availability of a near optimal projection. Numerical simulations
show that SSIHT succeeds in recovering signals for which IHT fails,
even when the projection is not near-optimal.
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Fig. 1. IHT (left), SSIHT (middle) and SSCoSaMP (right) recovery rates
for the synthetic experiment described in Section V. Color attribute: fraction
of realizations in which a perfect recovery is achieved.
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