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Abstract—We analyze the sampling of solutions to the
Helmholtz equation (e.g. sound fields in the harmonic
regime) using a least-squares method based on approxima-
tions of the solutions by sums of Fourier-Bessel functions
or plane waves. This method compares favorably to others
such as Orthogonal Matching Pursuit with a Fourier
dictionary. We show that using a significant proportion
of samples on the border of the domain of interest
improves the stability of the reconstruction, and that using
cross-validation to estimate the model order yields good
reconstruction results.

I. INTRODUCTION

Sampling an acoustical field (i.e. the spatial and tem-
poral behavior of sound pressure) or a mechanical field
(e.g. distribution of velocities on a vibrating membrane)
is an ubiquituous task in experimental acoustics and
mechanics. Usually, these fields are sampled on a uni-
form grid with density chosen according to the sampling
theorem. However, in the particular cases mentionned
above, the fields are known to satisfy the wave equation

1 0%u
or, in the harmonic regime, the Helmholtz equation
Au+ k*u =0, )

in two or three dimensions, where c is the wave velocity,
and k the wavenumber. This fact allows to sample such
fields with a reduced number of samples, with a least-
squares method described in section 2. Of interest here
is the choice of the repartition of the sampling points on
the domain of interest, and the choice of the order of
approximation used in the least-squares reconstruction.
In section 3, we recall the results given in [1] on the
stability of the reconstruction in function of the sampling
scheme for the case of the disk, and extend it to the 3D-
ball. We also gives numerical evidence for the case of
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the square, further showing that sampling on the border
of the domain as well as inside improves the stability of
the reconstruction. Finally, we give results of numerical
simulations using cross-validation for the determination
of the model order in section 4.

II. RECONSTRUCTION METHOD

Our goal here, given a solution to the Helmholtz
equation (2) in a domain D C Rd,d = 2or 3, is to
reconstruct it in a domain 2 C D from a limited number
of punctual measurements, without knowing the shape of
D or the boundary conditions on 0D. The reconstruction
scheme we use is based on the Vekua theory and least-
squares approximations, and has already been shown to
compare favorably with existing methods such as OMP
using sparsity in the Fourier domain [1], and to give
good results in experimental settings [2].

The Vekua theory [3], in its general formulation,
allows to build approximations of solutions to general
elliptic partial differential equations, by building opera-
tors mapping these solutions to harmonic functions and
reciprocally. Approximation of harmonic functions by
harmonic polynomials can then be translated as approx-
imation of solutions of the PDE by the images of the
polynomials. The particular case of the Helmholtz equa-
tion in 2 and 3 dimensions has been analyzed by Moiola
et al. [4]. In this case, the images of the polynomials
are the so-called generalized harmonic polynomials. In
two dimensions, the space of generalized harmonic poly-
nomials of order L is given in polar coordinates (r,6)
by

HP,p = span e'0.J(kr)

l=—L,,L

where J; is the [-th Bessel function. In three dimensions,
these spaces are defined in spherical coordinates (r, 0, ¢)
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by

span Yy (0, ¢)ji(kr)
=0, ,L
m=—1, 1

HPy j, =

where Y}, are the spherical harmonics, and j; the
spherical Bessel functions. Note that in two dimensions,
the dimension of HPy 1, is 2L + 1, while it is (L + 1)?
in three dimensions.

Their main result, given here in a simplified form and
for convex domains, is as follows:

Theorem 1. [4] Let u € HX(Q), K > 1 be a solution
to the Helmholtz equation in the convex domain §) €
R?, d = 2,3. Then, for j < K, there exists a generalized
harmonic polynomial uj, of order L such that, in two
dimensions,

i L \*
o=zl < ()l

and in three dimensions,
lu — g < CLAED |l g,

where \ depends only on the shape of ).

The result also holds for star-shaped domains, with a
slower convergence. Identical results are also available
for approximation by plane waves.

To reconstruct a solution u to the Helmholtz equation
using n samples, we fix an order of approximation L
such that m = dim HP} ;, < n, and estimate u by the
function @ € HP}, ;, minimizing the sum of the squares
of the errors between values u; sampled at the points
xj and u(z;), the sampling points being drawn using a
predefined density on 2:

:uergg}LZ\u z;) — ugl*.

Such a reconstruction scheme is not always stable. A
theorem, from Cohen et al [5], gives indication whether
the reconstruction % in a m-dimensional subspace using
n samples drawn with probability density v is stable.
With (L;);j—1..., an orthogonal basis(with respect to the
scalar product defined by the density v) of the subspace,
we define

= max Z |Lj(x
e

The result is as follows:

Theorem 2. [5] Let r > 0 be arbitrary but fixed and let
ko= 1182 rr e s such that

24-2r
n
K < 3
then, one has
E(llu—all?) < (1+e(n)om(u)® +8M*n™",  (4)
where €(n) := hfﬁ — 0 as n — 400, op(u) is the

best approximation error, M a upper bound of |u| and
u the least square approximation of u thresholded such
that |u| < M.

This suggests that the slowest K(m) increases, the
largest m can be, allowing a better reconstruction. The
choice of the density v is here important, as K is
dependent on it. This means that choosing a adequate
density allows to use a lower number of samples that,
e.g. the uniform density. Note however that the choice
of the density v also affects the norm used in theorem 2
to measure the error, which can be different than the
norm we are interested in. We are here interested in the
stability for the standard L? norm. We thus choose a
density of the form v = (1 — @)\ + a/ where A is the
uniform density, and v/ an arbitrary fixed density. The
choice of the density " and the parameter « is discussed
in the next section for some particular cases.

III. CHOICE OF THE SAMPLE DISTRIBUTION

Here, we will concentrate on measures v = (1 —
a)\ + ao, where the support of o is the boundary of
Q. This heuristic is supported by the following results
on the disk and the ball. For these two cases, we will
give estimations of K for particular values of m, i.e.
the size of the spaces HPy , m = 2L + 1 in 2D and

= (L +1)%in 3D.

For the case of the disk with densities v, = (1 —
a)\ + ao where o is the uniform measure on the circle,
the Fourier-Bessel functions, after normalization, form
an orthogonal basis for these measures. Using properties
of the Bessel functions, we can estimate the behaviour
of K(m) in function of a:

Theorem 3. [1] For the approximation by generalized
harmonic polynomials on the unit disk, one has for
sufficiently large m

KQ2L+1)>cy+cL?

when o = 0 for any ¢1 < 1/4 and where ¢ depends on
c1 and A\, and

2L +1
o

K(2L+1)<C+

165



Proceedings of the 10th International Conference on Sampling Theory and Applications

T
=0
=0.1/3
=05
=09

s =1

)

=

S

3

E 4

B

c

o

S ‘

[5} f

< V
107k 1

0 50 100 150 200 250

Number of Fourier-Bessel functions

Fig. 1. Reconstruction error in function of the order model for 400
measurements, with different proportions o of samples on the border.

when o > 0, and C depends on \ and «.

A similar result is available for plane waves approxi-
mations. This theorem shows that using samples on the
border needs a number of samples proportionnal to the
dimension of HPj ;, to ensure stability, while sampling
only inside the disk needs more samples.

The effect of the coefficient « is shown on figure 1,
where the approximation error in function of « and the
order of the model is given, for the recovery of a solution
of the Helmholtz equation with £ = 12, using n = 400
measurements. We see that a large proportion of samples
on the border allows a large order model, which improve
the reconstruction result. However, using samples on the
border only (o = 1) is detrimental to the reconstruction
error, as in this case, theorem 2 controls the error in the
norm defined by v, which is the Lo-norm on the circle
only.

We compare on figure 2 the results of the least-
squares method with Fourier-Bessel functions, OMP
with a large dictionary of Fourier modes defined on a
square containing the disk, and the least-squares method
with a smallest dictionary. The reconstruction of the
least-squares method combined with the Fourier-Bessel
approximation are clearly better than the two other tested
methods.

A slightly modified proof, using properties of the
spherical Bessel functions and of the spherical harmon-
ics, yields the following result for the 3D case, with o
the uniform measure on the sphere:

Theorem 4. For the approximation by generalized har-
monic polynomials on the unit ball, one has for suffi-
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Fig. 2. Reconstruction error in function of the number of measure-
ments for least square with Fourier-Bessel function, Fourier modes,
and Orthogonal Matching Pursuit with a dictionnary of Fourier modes

ciently large L
K(L+1)% >co+ e L?

when o = 0 for any c¢; < 1/9 and where ¢ depends on
c1 and \ and

K(L+1?) <04 EED

when o > 0, where C depends on A and «.

In this case, the number of measurements needed
to ensure stability grows faster than the dimension of
HPy, ;, for the uniformly dense sampling, while being
proportional to this dimension when using additional
samples on the border.

We now turn to the case of the square. As neither the
Fourier-Bessel functions, nor the plane waves, form an
orthogonal basis, we constuct one by orthogonalizing the
plane waves, using the Gram matrix of the plane waves
families which can be computed exactly in the case of
the measures described below.

We numerically compute K (m) for three differents
distributions:

e 19 = A, the uniform distribution on the square

e Uy = (1 — @)\ + ao, where o is the uniform

distribution on the boundary of the square

e V), = (1 — @)\ + ao’, where ¢’ is the measure

on the boundary with weight 1/47+v/1 — s? where
s = min(z,y).

The estimated values of K (m) for v, v/, and 1/ /2
are given on figure 3. Here, sampling on the border of
the square improves the stability of the reconstruction
compared to the uniform case, but still needs a high
number of samples.

Using the non-uniform sampling on the border, with
more samples in the sections of the boundary furthest
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Fig. 3.  Numerical evaluation of K for three different samples

distribution on the square.

from the origin, makes the behaviour of K (m) compa-
rable to m, which is the best case possible.

IV. CHOICE OF THE MODEL ORDER

Once the number of samples and their distribution are
fixed, the model order used in the reconstruction has to
be chosen. While a sufficient number of plane waves or
Fourier-Bessel functions are needed (physical arguments
recommend a number proportionnal to the product of the
wavenumber and the diameter of the domain), using a too
large order can result in overfitting, as visible figure 1.

A way to estimate the best order m to use is the cross-
validation. Given m samples, we reconstruct f from a
subset of m’ samples, and compute the reconstruction
error on the remaining m — m’ samples. We then repeat
with different subsets, and chose the order for which the
average error is minimal. Figure 4 compares the best
reconstruction error knowing f, and the reconstruction
error using the order estimated using the cross-validation.

V. CONCLUSION

The sampling of solutions to the Helmholtz equation is
interesting both for its experimental applications as well
as for theoretical developments. We showed here that a
careful choice of the density of the samples can improve
the stability of the reconstruction, with theoretical results
in simple cases, and numerical simulations in more
general settings. We also show that using cross-validation
to estimate the model order yields good results.

A general sampling strategy, i.e. a choice of the sample
density, dependent on the shape of the domain of interest
and of the frequency k, and possibly on the order m is
yet to be designed.
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Fig. 4. Comparison of the reconstruction using the generalized cross
validation to estimate the order model, and the best reconstruction
error.
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