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Abstract—Signals consisting of short pulses are present in
many applications including ultrawideband communication, ob-
ject detection and navigation (radar, sonar) and medical imaging.
The structure of such signals, effectively captured within the
finite rate of innovation (FRI) framework, allows for significant
reduction in sampling rates, required for perfect reconstruction.
In this work we consider two applications, ultrasound imaging
and radar, where the FRI signal structure allows to reduce
both sampling and processing rates. Furthermore, we show
how the FRI framework inspires new processing techniques,
such as beamforming in the frequency domain and Doppler
focusing. In both applications a pulse of a known shape or a
stream of such pulses is transmitted into the respective medium,
and the received echoes are sampled and digitally processed
in a way referred to as beamforming. Applied either spatially
or temporally, beamforming allows to improve signal-to-noise
ratio. In radar applications it also allows for target Doppler
frequency estimation. Using FRI modeling both for detected and
beamformed signals, we are able to reduce sampling rates and to
perform digital beamforming directly on the low-rate samples.

I. INTRODUCTION

When sampling an analog signal, we aim to represent it
by discrete-time coefficients, while capturing its important
features. According to the classic Shannon-Nyquist theorem
the minimal sampling rate required for perfect reconstruction
of bandlimited signals is twice the the maximal frequency.
The required sampling rate can be significantly reduced when
additional information about the signal structure is available.
An interesting class of structured signals was suggested by
Vetterli et al. [1], who considered signals with a finite number
of degrees of freedom per unit time - signals with finite rate of
innovation (FRI). One of the most studied cases of FRI signals
is a stream of pulses, namely, a signal consisting of a stream
of short pulses where the pulse shape is known. Such signals
are presented in abundance in ultrawideband communication,
object detection and navigation (radar, sonar) and medical
imaging.

In this work we consider two applications where the FRI
signal structure allows to reduce both sampling and processing
rates and inspires new processing techniques. In particular,
we show how different forms of beamforming, used to im-
prove resolution and increase signal-to-noise-ratio (SNR), can
be implemented directly on reduced rate samples. This is
achieved by replacing the standard time-domain beamforming
by a frequency domain approach and relying on previous FRI

sampling techniques in frequency [2]–[4].
The first application is medical ultrasound, where the known

pulse shape is transmitted into the tissue and the echoes
reflected off scatterers form a stream of pulses signal detected
by the elements of the transducer. Signals detected at each
element are sampled and digitally processed by beamforming
in time, exploiting the array geometry. Such a beamformed
signal forms a line in the image. Treating both detected and
beamformed signals in the FRI framework and performing
beamforming in frequency allows to reduce the sampling rate
far below standard rates that are required to improve the
system’s beamforming resolution.

The second application is radar. Similar to ultrasound, a
stream of known pulses is transmitted into space and reflected
off any targets. Whereas in ultrasound digital beamforming
is performed spatially, i.e. combining a single pulse from
different transducers, in the single transceiver radar model we
consider beamforming is performed temporally between differ-
ent pulses on the same transceiver. This beamforming process,
besides improving SNR, allows for target Doppler frequency
estimation as well. Here again we show how beamforming, and
consequently, radar detection, can be performed efficiently at
sub-Nyquist rates by using sub-Nyquist sampling methods in
frequency [4], [5].

II. ULTRASOUND

Modern imaging systems use multiple transducer elements
to transmit and receive acoustic pulses. The imaging process
is described as follows: An energy pulse is transmitted along a
narrow beam. During its propagation echoes are scattered by
acoustic impedance perturbations in the tissue, and detected
by the elements of the transducer. Collected data are sampled
and digitally beamformed, resulting in an image line.

Rates up to 4 times the Nyquist rate, dictated by the
bandwidth of the individual signal, are required in order to
improve the system’s beamforming resolution and to avoid
artifacts caused by digital implementation. From now on we
will denote this sampling rate as the beamforming rate fs.

To get a sense of the sampling and processing rates involved
in ultrasound imaging, we can evaluate the number of samples
taken at each transducer element based on the imaging setup
used to acquire in vivo cardiac data. The acquisition was
performed with a GE breadboard ultrasonic scanner of 64
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acquisition channels. The radiated depth r = 16 cm and the
speed of the sound c = 1540 m/sec yield a signal of duration
T = 2r/c ≃ 210 µsec. The acquired signal is characterized
by a narrow bandpass bandwidth of 2 MHz, centered at the
carrier frequency f0 ≈ 3.1 MHz, leading to a beamforming
rate of fs ≈ 16 MHz and Tfs = 3360 real-valued samples.

We now show that the number of samples can be reduced
significantly since the oversampling dictated by the digital im-
plementation of beamforming in time can be bypassed, when
the beamformed signal is treated within the FRI framework
and beamforming is performed in the frequency domain.

A. Signal Model

According to [2], [4], the beamformed signal in ultrasound
imaging obeys an FRI model:

Φ(t; θ) ≃
L∑

l=1

b̃lh(t− tl), (1)

where h(t) is the transmitted pulse-shape, L is the number of
scattering elements in direction θ, {b̃l}Ll=1 are the unknown
amplitudes of the reflections and {tl}Ll=1 denote the unknown
delays. Sampling both sides of (1) at the rate fs and quantizing
the delays {tl}Ll=1 with quantization step 1/fs, such that tl =
ql/fs, ql ∈ Z, we can rewrite (1) as follows:

Φ[n; θ] ≃
L∑

l=1

b̃lh[n− ql] =
N−1∑
l=0

blh[n− l], (2)

where
bl =

{
b̃l if l = ql
0 otherwise.

(3)

Calculating the Discrete Fourier Transform (DFT) using (2):

ck =

N−1∑
n=0

Φ[n; θ]e−i 2π
N kn = hk

N−1∑
l=0

ble
−i 2π

N kl, (4)

where hk is the DFT coefficient of h[n]. The transmitted pulse
h(t) is a narrowband baseband waveform, g(t), modulated by
a carrier at frequency f0. When such a pulse is sampled at
rate fs, most of its DFT coefficients are zero. Obviously, (4)
implies that the only non-zero DFT coefficients are in the
bandwidth of the transmitted pulse. When a set κ of these non-
zero DFT coefficients is known we can reconstruct the signal
perfectly by zero-padding and then performing an inverse DFT
(IDFT). In the cardiac imaging setup described above the
bandwidth of g(t) is equal to 2 MHz, the modulation frequency
f0 = 3.1 MHz, and the sampling rate fs = 16 MHz, leading
to K = |κ| ≈ 360.

As we show further in Section II-C, sampling rates are
proportional to the number of DFT coefficients of the beam-
formed signal that we want to calculate. Hence, to reduce
the sampling rates, we aim to obtain only a subset µ ⊂ κ,
|µ| = M < K = |κ|, of non-zero DFT coefficients of the
beamformed signal and propose a method to reconstruct κ
from its subset µ.

B. Beamformed Signal Reconstruction

Defining a K-length vector c with k-th entry ck/hk, k ∈ κ,
we can rewrite (4) in matrix form:

c = Db, (5)

where D is a K × N matrix formed by taking the set κ of
rows from an N×N DFT matrix, and vector b is of length N
with l-th entry bl. Since from now on only subset µ is given,
define an M -length vector cµ with k-th entry ck/hk, k ∈ µ
and rewrite (5) as follows:

cµ = ADb, (6)

where A is an M ×K measurement matrix which picks the
subset µ of rows from D.

We propose an analysis approach [6], namely, we aim to
reconstruct the set κ from its subset µ, while assuming that
the analyzed vector D∗c is compressible. This assumption is
justified as follows: A typical beamformed ultrasound signal
is comprised of a relatively small number of strong reflections
and a bunch of much weaker scattered echoes. It is, therefore,
natural to assume that b from (5) is compressible, implying
that c has a compressible expansion in D. Since D is a partial
DFT matrix, its Gram matrix is nearly diagonal, implying that
D∗c is also compressible [6]. The analysis approach can be
translated into the l1 optimization problem:

min
c

∥D∗c∥1 subject to ∥Ac− cµ∥2 ≤ ε. (7)

Under certain conditions which are satisfied in our ultrasound
setup [6], [7] the solution of (7) yields the set κ̃ of non-
zero DFT coefficients of the beamformed signal which is
sufficiently close to the true values of κ.

C. Sampling Scheme and Beamforming in Frequency

We now address the following question: how many samples
of the individual signals should be taken in order to compute
the subset µ of non-zero DFT coefficients of the beamformed
signal?

To answer this question we introduce a recently developed
technique, referred to as beamforming in frequency. This
method was proposed in [4] and [7], where it was shown
that beamforming can be performed directly in the frequency
domain, namely, a set µ of the DFT coefficients of the
beamformed signal can be calculated as a linear combination
of a set ν of the DFT coefficients of each individual signal.
Experimental results show that |ν| ≈ |µ|, implying that we
can calculate the desired set of beamformed DFT coefficients
from a small number of DFT coefficients of each individual
signal.

As it was shown in [2], [4], [7], a set ν of the DFT
coefficients of each individual signal can be obtained by the
sub-Nyquist Xampling (“compressed sampling”) [8] method,
an analog-to-digital conversion (ADC) which performs analog
prefiltering of the signal before taking low-rate point-wise
samples. The number of samples taken from the individual
signal in this case is |ν| ≈ |µ|.
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To demonstrate the proposed method and evaluate the rate
reduction, a subset µ of 100 DFT coefficients corresponding to
the central frequency samples in the bandwidth of the transmit-
ted pulse were chosen. To calculate µ we need approximately
|µ| = 100 samples per individual signal, implying 30 fold
reduction in sampling rate. The result is shown in Fig. 1 (a).
We compare it with an image created by a standard technique
using 3360 samples per individual signal in Fig. 1 (b). As can
be seen, we obtain sufficient image quality with more than 30
fold reduction in sampling rate.

(a) (b)
Fig. 1: Cardiac images. (a) Proposed method, 100 samples per
image line. (b) Standard method, 3360 samples per image line.

III. RADAR

We next consider target detection and feature extraction
in a single transceiver, monostatic, narrow-band pulse-train
radar system. We show that both sampling and processing
can be performed at sub-Nyquist rates, when an appropriate
signal model is used. Targets are non-fluctuating point targets,
sparsely populated in the radar’s unambiguous time-frequency
region: delays up to the Pulse Repetition Interval (PRI) and
Doppler frequencies up to its reciprocal the Pulse Repetition
Frequency (PRF). We propose a recovery method which
can detect and estimate targets’ delay and Doppler, using a
linear, non-adaptive sampling technique at a rate significantly
lower than the radar signal’s Nyquist frequency, assuming the
number of targets L is small.

Current state-of-the-art radar systems sample at the signal’s
Nyquist rate, which can be hundreds of MHz and higher. Sim-
ilarly to the ultrasound application, the goal of our approach,
breaking the link between the signal bandwidth and sampling
rate, is achieved by using FRI signal model and the Xampling
method. The latter yields compressed samples (“Xamples”),
containing the information needed to recover the desired signal
parameters. This work expands [5], adding Doppler to the
target model and proposing a new digital recovery method to
estimate it by relying on beamforming ideas operating on sub-
Nyquist samples, as we showed in the context of ultrasound
imaging.

A. Signal Model

We consider a radar transceiver that transmits a pulse train

xT (t) =

P−1∑
p=0

h(t− pτ), 0 ≤ t ≤ Pτ (8)

consisting of P equally spaced pulses h(t). The pulse-to-pulse
delay τ is referred to as the PRI. The pulse h(t) is a known
time-limited baseband function with continuous-time Fourier
transform (CTFT) H(ω) =

∫∞
−∞ h(t)e−jωtdt. We assume that

H(ω) has negligible energy at frequencies beyond Bh/2 and
we refer to Bh as the bandwidth of h(t). The target scene
is composed of L non-fluctuating point targets, where we
assume that L is known, although this assumption can easily
be relaxed. The pulses reflect off the L targets and propagate
back to the transceiver. Each target l is defined by three
parameters: a delay τl, a Doppler frequency νl and a complex
amplitude αl, proportional to the target’s radar cross section
(RCS) and all propagation factors.

Under several assumptions [9], we can write the received
signal as

x(t) =
P−1∑
p=0

L−1∑
l=0

αlh(t− τl − pτ)e−jνlpτ . (9)

It will be convenient to express the signal as a sum of single
frames

x(t) =

P−1∑
p=0

xp(t), (10)

where

xp(t) =

L−1∑
l=0

αlh(t− τl − pτ)e−jνlpτ . (11)

It is evident from (9) that we are dealing with an FRI
signal, since it can be described by 3L parameters spanning
an interval of duration Pτ , yielding a rate of innovation of
3L/Pτ . Our goal is to accurately detect the L targets, i.e. to
estimate the 3L parameters {αl, τl, νl}L−1

l=0 in (9), using the
least possible number of digital samples.

B. Doppler Focusing

The Doppler Focusing processing technique uses target
echoes from different pulses to create a single superimposed
pulse, improving SNR for robustness against noise and im-
plicitly estimating targets’ Doppler in the process. Using (11),
we define the following time shift and modulation operation
on the received signal:

Φ(t; ν) =

P−1∑
p=0

xp(t+ pτ)ejνpτ

=

P−1∑
p=0

L−1∑
l=0

αlh(t− τl)e
j(ν−νl)pτ

=

L−1∑
l=0

αlh(t− τl)

P−1∑
p=0

ej(ν−νl)pτ . (12)

We now analyze the sum of exponents in (12). For any
given ν, targets with Doppler frequency νl in a band of width
2π/Pτ around ν, i.e. in Φ(t; ν)′s “focus zone”, will achieve
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coherent integration and an SNR boost of approximately

g(ν|νl) =
P−1∑
p=0

ej(ν−νl)pτ
|ν−νl|<2π/Pτ∼= P (13)

compared with a single pulse. On the other hand, since the sum
of P equally spaced points covering the unit circle is generally
close to zero, targets with νl not “in focus” will approximately
cancel out. Thus g(ν|νl) ∼= 0 for |ν − νl| > 2π/Pτ . Hence
we can approximate (12) by

Φ(t; ν) ∼= P
∑

l:|ν−νl|<2π/Pτ

αlh(t− τl). (14)

Instead of trying to estimate delay and Doppler together,
we have reduced our problem to delay only estimation for a
small range of Doppler frequencies, with increased amplitude
for improved performance against noise.

C. Delay-Doppler Recovery Using Doppler Focusing

Calculating the DFT of each of the pulses xp(t) of the multi-
pulse signal (9), and since xp(t) is confined to the interval
t ∈ [pτ, (p+ 1)τ ], we obtain

cp[k] =
1

τ
H(2πk/τ)

L−1∑
l=0

αle
−jνlpτe−j2πkτl/τ , (15)

where we used the fact that since both k, p ∈ Z we have
e−j2πkp ≡ 1. From (15) we see that all 3L unknown param-
eters {αl, τl, νl}L−1

l=0 are embodied in the Fourier coefficients
cp[k] in the form of a complex sinusoid problem.

Having acquired cp[k] using a framework similar to one
introduced in section II-C, we now perform the Doppler
focusing operation for a specific frequency ν

Ψν [k] =
P−1∑
p=0

cp[k]e
jνpτ

=
1

τ
H(2πk/τ)

L−1∑
l=0

αle
−j2πkτl/τ

P−1∑
p=0

ej(ν−νl)pτ . (16)

Following the same arguments as in (13), for any target l
satisfying |ν − νl| < 2π/Pτ we have

P−1∑
p=0

ej(ν−νl)pτ ∼= P. (17)

Therefore, Doppler focusing can be performed on the low rate
sub-Nyquist samples:

Ψν [k] ∼=
P

τ
H(2πk/τ)

∑
l:|ν−νl|<2π/Pτ

αle
−j2πkτl/τ . (18)

Equation (18) is scaled by P compared with a single
pulse, increasing SNR for improved performance with noise.
Furthermore, we reduced the number of active delays. For
each ν we now have a delay estimation problem, which can
be written in vector form as

Ψν =
P

τ
HVxν , (19)

where
Ψν = [Ψν [k0] ... Ψν [k|κ|−1]]

T ∈ C|κ|. (20)

This is a CS problem which has already been solved [3], [9],
[10]. We emphasize that the Doppler focusing technique is
a continuous operation on ν, and can be performed for any
Doppler frequency. Since the focus zone for each ν is of
width 2π/Pτ , we can find various finite sets of ν’s spanning
[0, 2π/τ ]. For any such set, define its size as Nν . For each
ν in the set, we solve (19) assuming xν’s support is of size
L. This problem can be solved using an abundance of CS
algorithms [11]–[13]. After solving Nν separate CS problems
with dictionary of size |κ| × Nτ , we hold at most LNν

estimated amplitudes. Since the absolute value of amplitudes
recovered in the support is indicative of true target existence
as opposed to noise, we take the L strongest ones as true target
locations.
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