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ABSTRACT
We consider the problem of parameter estimation in a wireless
sensor network, where because of the bandwidth and power
constraints, each sensor transmits quantized information to its
parent on a multihop path. Our approach jointly optimizes:
i) sensor selection, ii) routing structure, and iii) number of bits
per sample for each sensor. First, we express our problem as an
optimization problem, and then we design an algorithm that is
based on an adaptive quantization and an estimate-and-forward
scheme that allows performing sequentially this joint optimiza-
tion in an efficient way. We show that our algorithm provides a
routing structure that trades-off the aforementioned three met-
rics better than the traditional shortest path tree routing struc-
ture, which is commonly used in practice. Numerical results
depicting the performance and advantages of our approach over
previous state-of-the-art approaches are presented.

1. INTRODUCTION
The power efficiency in a Wireless Sensor Network (WSN) can
be achieved by adopting multihop routing and by activating
only a subset of sensors at a desired time slot. Then, each
selected sensor should apply an Estimate-and-Forward (EF)
scheme, presented in [1, 2], to fuse all other measurements that
are received from its child sensors together with its own mea-
surement to perform the parameter estimation, and then trans-
mit only one flow of data to its parent sensor in the chosen
routing structure. Given a WSN with a coverage graph and a
sink (querying) node, we consider a problem in which three
metrics: i) total distortion in estimation, ii) total communica-
tion cost, and iii) number of bits per sample for each sensor are
optimized jointly. Thus, for a given total power budget the best
subset of sensors, the optimal bit allocation, and the best asso-
ciated routing structure to send the aggregated information to
the sink node is achieved. Furthermore, when considering the
EF scheme and allowing an interplay among these three met-
rics, we will show an important result that the routing structure
using the traditional Shortest Path Tree (SPT) [3], widely used
in practice, is no longer optimal. That is, our solution for rout-
ing provides a better trade-off among these three metrics.

We consider another scheme, which we will take into ac-
count to compare the performance of our work, is an Measure-
and-Forward (MF) [4]. In this scheme, measurements and
quantization errors are simply forwarded via a multihop path
to the sink node for final estimation. The authors in [4], con-
sider the network lifetime maximization issue for an estimation
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19545-C04-04 “COSIMA”, CONSOLIDER-INGENIO 2010 CSD2008-
00010, “COMONSENS”, the European STREP Project “HYDROBIONETS”
Grant no. 287613 within the FP7 Framework Programme, and by a Telefonica
Chair.

application in energy-limited sensor networks, where a Linear
Programming (LP) problem is formulated to minimize jointly
the total number of bits at each sensor and the total transmis-
sion cost of the multihop routing to the sink node. Since it
applies the MF scheme, we name it as an LP-MF. Notice that
the total throughput generated in the MF scheme is always
larger than compared to the EF scheme, and therefore the total
transmission cost in the MF scheme is always larger. In [5],
a Progressive Distributed Estimation using the EF scheme is
proposed, we name it as a PDE-EF, where the objective is to
estimate an unknown deterministic parameter using the Best
Linear Unbiased Estimator (BLUE) estimator [6] in order to
save the total energy. The main demerit of this approach is that
there is no joint trade-off among all three metrics and it does
not provide the choice of selecting a subset of sensors.

We compare our approach with the previously presented
state-of-the-art approaches: LP-MF [4] and PDE-EF [5], show-
ing a better performance. The organization of the paper is
as follows: Section II presents our problem formulation for
progressive estimation following with our optimization prob-
lem. Section III describes our adaptive quantization based ap-
proaches. We present our experimental results in section IV.
Finally, conclusions are given in section V.
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Fig. 1: A WSN simulation example with N = 50 sensors where the following
elements can be seen: a subset of selected sensors; an associated routing struc-
ture (thick edges); and number of bits per sample to quantize measurements
of the selected sensors (numbers in selected sensors), and where a sink node
and a source target are located at the center (large black circle) and at the top
left corner (square), respectively. Thin edges represent the underlying network
connectivity graph and thick edges belong to the selected routing structure;
larger communication cost links, for which dj,k > dth are eliminated, where
dj,k is the distance between sensor j and k.
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2. PROBLEM FORMULATION
We consider a WSN consisting of n sensors with a unique iden-
tity j ∈ {1, 2, ..., n} and there is a sink node with an identity
n + 1, where final estimation is to be performed under given
total power constraint. Further, we consider that sensors are
deployed in a square region and the distance between a sen-
sor and any potential neighbor can be expressed as ξdth, where
ξ ∈ (0, 1] is uniformly distributed and dth is a normalizing fac-
tor. This results in a network connectivity symmetric graph G
= (V, E), as illustrated in Fig. 1, where V is a set of n stationary
sensors and E is a set of communication links. We assume that
there is an underlying MAC protocol available, which resolves
the network collisions. We also assume that an incidence ma-
trix A is given such that: Ai,j = 1 if di,j ≤ dth that implies
that the links (i, j) and (j, i) exist in the network connectivity
graph and Ai,j = 0 otherwise, where di,j is the distance be-
tween sensor i and sensor j. Let us assume that sensor j makes
an observation yj ∈ R on a deterministic parameter θ ∈ R, and
is described by:

yj = hjθ + zj , j = 1, 2, . . . , n (1)

where θ is the unknown deterministic scalar parameter to be
estimated, whose observation is distorted by a scalar hj ∈ R
and corrupted by additive noise zj , which is assumed to be i.i.d.
with pdf N (0, σ2

zj
), and where σ2

zj
is assumed to be spatially

varying, but otherwise unknown. We consider that the scalar hj
follows the form hj = d−βj,t , that is, yj = θ/dβj,t + zj . Here,
hj can be a signal strength decay model [7], where dj,t is the
distance from sensor j to the source target t and β ≥ 2 is the
signal decay exponent, which is assumed to be known (or esti-
mated via training sequences [7]). This model can be found in
many practical scenarios, such as in [8, 9].

We assume that the receiver has a Gaussian noise with p.s.d.
Nj , j ∈ {1, . . . , n} within the baseband [−W2 , W2 ], where W
is the bandwidth available on each link among sensors. We
also assume that the radio frequency channels between neigh-
boring sensors during period T , are static, where T is the
period required to perform the EF operation by each sensor.
We consider that each sensor can adjust its communication
cost (transmission power) such that a desired SNR S0 (as de-
fined for instance in [10]) is provided at the receiver to ensure
a reliable communication. In this sense, the communication
cost from an active sensor j to another active neighbor k is
fc(dj,k) = S0Njd

α
j,k(2Bj − 1)/µ, where dαj,k is a channel

gain and α (2 < α < 6, depending on the WSN scenario) is
the path-loss exponent [5, 11],Bj is the total number of bits per
sample used to quantize samples at sensor j, and µ (µ > 0) is
a parameter that depends on the particular modulation scheme.

A−A δi δi+1

θ̂jp∆ = θ̂j − δi ∆ = δi+1 − δi

Pr{Qj = δi} = 1− p Pr{Qj = δi+1} = p

Fig. 2: The probabilistic quantization (PQ) method [12, 13].
Because of the strict bandwidth and energy limitations [14],

each sensor is prevented from transmitting analog data, hence
a local quantization is performed before transmission. Suppose
that we wish to obtain a quantized messageQj withBj bits per
sample for a local estimate θ̂j at sensor j, where we use a uni-

form quantization with l = 2Bj uniformly spaced quantization
levels. Then, the threshold is given by a set δ = {δ1, . . . , δl}
that follows that ∆ = δi+1 − δi = 2A/(2Bj − 1). Assuming
that θ̂j is bounded within [−A,A] as shown in Fig 2, then the
variance of the quantization error when quantizing θ̂j is given
by σ2

q,j = ∆2/4 = A2/(2Bj − 1)2 ≤ 4A2/22Bj , when a
uniform and Probabilistic Quantizer (PQ), defined as Q(θ̂j) =
Qj(θ̂j , Bj) [12, 13] is used. In this quantization method, θ̂j
is quantized as follows. If θ̂j lies between two quantization
thresholds: δi and δi+1 (see Fig 2), then θ̂j is quantized to the
threshold δi with probability 1 − p and it is quantized to the
threshold δi+1 with probability p. Here, p = (θ̂j − δi)/∆
depends on the input distribution and it is chosen such that
the quantization Qj is unbiased. Thus it provides two impor-
tant properties: the error of this quantization method has zero
mean, E{Qj} = θ̂j ; and the variance σ2

q,j can be bounded as,
σ2
q,j ≤ A2/22Bj , where this inequality holds when Bj ≥ 1. In

this work, we are not considering more complex quantization
methods such as vector quantization since a close-form expres-
sion for the variance of a realistic vector quantization is difficult
to obtain.
2.1. Progressive Parameter Estimation
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j ∈ Ck

Fig. 3: Illustration of a multihop progressive estimation scheme.
Let us assume that the input to the j-th sensor (as shown in

a simple example Fig. 3) consists of the sensor measurement
yj and the information [Qi, σ2

Qi
], i ∈ Cj that are received from

all its children sensors {i1, i2, i3} ∈ Cj , where Cj is a set of
children nodes of sensor j. We represent the quantized esti-
mation that is received from sensor i by Qi and its associated
variance by σ2

Qi
. Then, the BLUE [5, 6] of θ in terms of yj ,

Qi, and σ2
Qi

at sensor j is given by:

θ̂j =

„
bjh

2
j

σ2
yj

+
X
i∈Cj

1

σ2
Qi

«−1„
bjhjyj
σ2
yj

+
X
i∈Cj

Qi
σ2
Qi

«
(2)

where we assume a binary variable bj , j = 1, . . . , n to assign
the status of a sensor such that bj = 1 refers to an active sensor
and bj = 0 refers to an inactive sensor. Then, the variance of
θ̂j , which is the MSE of the estimator, is given by:

σ2
θ̂j

=

„
bjh

2
j

σ2
yj

+
X
i∈Cj

1

σ2
Qi

«−1

(3)

and the variance of the quantization error at sensor j is σ2
q,j ,

then the variance of quantized estimation Qj at sensor j is:

σ2
Qj

= bjσ
2
q,j +

„
bjh

2
j

σ2
yj

+
X
i∈Cj

1

σ2
Qi

«−1

(4)
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Consider first a simple case when only one child i of sensor
j is available, that is, |Cj | = 1, where |Cj | denotes the cardinal-
ity of Cj , then (4) is given by:

σ2
Qj

= bjσ
2
q,j +

„
bjh

2
j

σ2
yj

+
1

σ2
Qi

«−1

= bjσ
2
q,j +

σ2
yj
σ2
Qi

σ2
yj

+ σ2
Qi
bjh2

j

(5)
Since (4) is a nonlinear recursion of σ2

Qi
, even if we apply the

same argument recursively in a 1-D network (that is, |Cj | = 1),
it is hard to find a closed-form expression for σ2

Qn
, which is the

final overall MSE based on all n sensors. It can be easily seen

that (
σyj√
bjhj

−σQi)
2 ≥ 0, which gives

2σyj
σQi√
bjhj

≤ (
σ2

yj

bjh2
j
+σ2
Qi

).

Then, without loss of generality, (5) can be bounded [5, 10] as:

σ2
Qj
≤ bjσ2

q,j +
σ2
yj

4bjh2
j

+
σ2
Qi

4
(6)

And the equivalent form of (6) for |Cj | > 1 of sensor j is:

σ2
Qj
≤ bjσ2

q,j +
σ2
yj

(1 + |Cj |)2bjh2
j

+
1

(1 + |Cj |)2
X
i∈Cj

σ2
Qi

(7)

The following recursion leads to a generalized form of the
total estimation error due to all n sensors. To do this, we write
an equivalent form of (7) for sensor k, where sensor k is the
parent of sensor j (k ← j ← i), as shown in Fig. 3. In other
words, j ∈ Ck, that is, sensor j is now one of the children of
sensor k, then (7) for sensor k becomes:

σ2
Qk
≤ bkσ2

q,k +
σ2
yk

(1 + |Ck|)2bkh2
k

+
1

(1 + |Ck|)2
X
j∈Ck

σ2
Qj

(8)

Using (7) and (8), we obtain:

σ2
Qk
≤
„
bkσ

2
q,k +

1

(1 + |Ck|)2
X
j∈Ck

bjσ
2
q,j

«
+

„
σ2
yk

(1 + |Ck|)2bkh2
k

+
1

(1 + |Ck|)2
X
j∈Ck

σ2
yj

(1 + |Cj |)2bjh2
j

«
+

1

(1 + |Ck|)2
X
j∈Ck

1

(1 + |Cj |)2
X
i∈Cj

σ2
Qi

(9)

If sensor i is the leaf node, that is, |Ci| = 0, then (4) be-

comes σ2
Qi

= biσ
2
q,i +

σ2
yi

bih2
i

. In this case, equation (9) can be
generalized as a sum of two terms:

σ2
Qn
≤

nX
j=1

bjσ
2
q,j

Pj
+

nX
j=1

σ2
yj

Pj(1 + |Cj |)2bjh2
j

(10)

where σ2
Qn

is the total MSE obtained at the sink node con-
tributed by all n sensors and Pj =

∏
l∈Ωj

(1+ |Cl|)2, where Ωj
is a set of all sensors in a single path between sensor j and the
sink node S.
2.2. Optimization Problem

In order to transmitBj bits per sample reliably from sensor j to
its parent k, the minimum required communication cost must

satisfy fc(dj,k) = S0Njd
α
j,k(2Bj − 1)/µ < S0Njd

α
j,k2Bj ,

based on the Shannon theory and a uniform quantization
[5, 12]. Then, to optimize jointly three metrics: total distortion
in estimation (σ2

Qn
), total communication cost, and number of

bits per sample for each sensor, we formulate our problem as
an optimization problem by assuming that the desired SNR S0

is fixed for all sensors, that is:

minimize
{bj ,bk,Bj}

nX
j=1

„
4bjA2

Pj22Bj
+

σ2
yj

Pj(1 + |Cj |)2bjh2
j

«

subject to
nX

j=1,j∈Ck

bjN
2
j d

2α
j,k,2

2Bj ≤ Pmax

Bj ≥ 1

bj ≤ bk, j ∈ Ck, Aj,k = 1

bj ∈ {0, 1}

(11)

where ||.||2 (norm-2) is chosen in the sensor power vector
so that we can penalize effectively higher communication cost
links. The constraint bj ≤ bk ensures that a sensor j (j ∈ Ck)
is selected only when its parent k is selected, that is, it ensures
a subtree T ⊂ G from the selected sensors, rooted at the sink
node. Inequality Bj ≥ 1 ensures that at-least one bit per sam-
ple is allocated to each sensor measurement.

3. SENSOR SELECTION AND ROUTING
ALGORITHM

3.1. Fixed-Tree Relaxation-Based Adaptive Quantization

This section deals with an algorithm that decouples fc, which
controls the communication cost and the estimation process,
σ2
Qn

. For this, we first generate a Shortest Path Tree based on
Communication Cost (SPT-CC) rooted at the sink node with
Bj = 1 bit per sample for each measurement. Then, we store
an edge-set {(j, k)}, where k is the parent of j, which is de-
fined as a directed edge j → k. Thus, the information for
routing, j ∈ Ck in (11), is given. Finally, we rewrite the op-
timization problem to solve jointly the sensor selection (with
variable bj) and the bit allocation (with variable Bj) so that the
routing structure used for selected sensors will be a subtree of
the SPT-CC that has to be rooted at the sink node. We call this
approach as Fixed-Tree Relaxation-based Adaptive Quantiza-
tion (FTR-AQ) algorithm. Applying the EF scheme, a relaxed
version of problem (11) is given by:

minimize
{brj ,Bj}

nX
j=1

„
4brjA2

Pj22Bj
+

σ2
yj

Pj(1 + |Cj |)2brjh2
j

«

subject to
nX

j=1,j∈Ck

brjN
2
j d

2α
j,k2

2Bj ≤ Pmax

Bj ≥ 1

brj ≤ brk, j ∈ Ck
brj ∈ [0, 1]

(12)

where brj is the relax version of the variable bj . Since prob-
lem (12) is a combinatorial optimization problem, in which the
variable bj ∈ {0, 1}, and we can show as in [2] that this prob-
lem is generally an NP-hard. Notice that relaxed problem (12)
is not a convex optimization problem because first inequality
is a product of two convex functions, but it can be transformed

3
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into another problem by a change of variables and a transfor-
mation of the objective and constraints function. Let us define
rj = 2Bj/

√
brj , then (12) becomes:

minimize
{brj ,rj}

nX
j=1

„
4A2r−2

j

Pj
+

σ2
yj

Pj(1 + |Cj |)2brjh2
j

«

subject to
nX

j=1,j∈Ck

brj
2N2

j d
2α
j,kr

2
j ≤ Pmax

brj ≤ brk, brj ∈ [0, 1], j ∈ Ck
rj ≥ 2, j = 1, . . . , n

(13)

This is now a Geometric Programing (GP) problem [15] since
the objective is a posynomial function of brj and rj . The con-
straints are also expressed as posynomial inequalities, therefore
it can be solve efficiently by GP programming (using interior-
point method [15]).

We use the solution {br∗j , r∗j } of problem (13) to perform
a suboptimal subset selection by sorting the optimal values
{br∗j }nj=1 in descending order and selecting a subset S of K
largest br∗j ’s satisfying the power constraint inequality. B∗j ’s
are obtained by B∗j = 1

2 log2( 1
2r
∗2
j b

r∗
j ) that need to be rounded

up to the nearest integer. Because of the subset selection, num-
ber of children |Cl| for each sensor in S need to be updated,
therefore Pj =

∏
l∈Ωj

(1 + |Cl|)2 becomes P∗j =
∏
l∈Ωj

(1 +

|C∗l |)2 with updated value |C∗l |. Then, denoting {b̂rj}nj=1 a set
of binary values such that b̂rj = 1 if j ∈ S and b̂rj = 0 if j /∈ S,
we have that:

LFTR-AQ =

nX
j=1

„
4bbrjA2

P∗j 22B∗j
+

σ2
yj

P∗j (1 + |C∗j |)2bbrjh2
j

«
(14)

Further, it is noted that because of the relaxation and the con-
straint brj ≤ brk in (13), sorting the variables {br∗j } makes a
subtree T of SPT-CC, which is routed at the sink node.

3.2. Local Distributed Optimization Adaptive Quantiza-
tion

dns,s

dns,s ∈ T ,
assign: ns = s

dns,s ∈ GS\T ,

{dj,k}={dj,k} ∈ T > dns,s

(max{dj,k} ∩ T ), (dns,s ∪ T )
such that T ⊂ G

Final edge-swapping;
updated T

Fig. 4: Graphical representation of the edge-swap method [2]; Step 3 and Step
4 of Algorithm 2.

Finding a possible subset S of K selected sensors, their
assigned bits per sample B∗j , j ∈ S , and an associated rout-
ing structure T from the solution of problem (13), can be im-
proved by two operations: 1) performing an edge-swap method

[2] on the subset S and 2) optimizing B∗j locally and inde-
pendently at each sensor. We call this process as a Local Dis-
tributed Optimization Adaptive Quantization (LDO-AQ) algo-
rithm. First, we perform the edge-swap and then optimize B∗j
only for swapped edges. In order to perform this, we first de-
fine a subgraph GS , which is a graph obtained from restricting
the graph G to the subset S. Then, we perform swaps among
the edges in T and the edges in GS\T in such a way that the
new resulting tree after an update (swap) in the edges, remains
a non-spanning tree of a graph G and that must be routed at
the sink node. Steps of the procedure are given in Algorithm 2
and then are illustrated in Fig. 4.

Algorithm 1 LDO-AQ Algorithm
Require: S, T , B∗j , Bmax, K

Initialization:

• s = n+ 1; m = 1; ns= nearest sensor to s;

Step 1: find ns
Step 2: if m = K, Stop; otherwise continue
Step 3: if dns,s ∈ T go to Step 6; otherwise continue
Step 4: find {dj,k} = {fc(dj,k)} ∈ T > fc(dns,s)
remove largest edge, T := T\max {dj,k} 3 T ⊂ G;
update, |C∗k | := |C∗k | − 1;
and add edge dns,s, T := T ∪ dns,s 3 T ⊂ G;
update, |C∗s | := |C∗s |+ 1;
power gain, Pgain = fc(max {dj,k})− fc(dns,s);
Step 5: update B∗ns

for the edge dns,s such that Pgain → 0
for B∗ns

=1 to Bmax do
Pgain = Nj max {dj,k}α2B

∗
j −Nnsd

α
ns,s2

B∗ns ;
if Pgain < 0 then

stop and update: B∗ns
= B∗ns

− 1;
end if

end for
assign: ns = s; m = m+ 1 go to Step 1
Step 6: assign ns = s; m = m+ 1 go to Step 1

The idea given by these steps is the following: first, we
assign s = n+1 (identity of the sink node) and an indexm = 1,
then find the nearest sensor ns to s based on the communication
cost and the solution B∗j of problem (13). Find, if the edge
dns,s ∈ T is true (in Step 3), then there is no swap, go to
Step 6 to assign ns = s, increase m by one, and then return
to Step 1 to repeat the process. On the other hand, if dns,s /∈
T , then find the list {dj,k} of all the edges of T that are with
the larger communication cost than the communication cost of
the edge dns,s. Find the largest dj,k from the list {dj,k} such
that while swapping it with dns,s ensures that T is still routing
at the sink node. Update T and number of children |C∗| by
removing the edge dj,k and adding the edge dns,s and calculate
a power gain Pgain = Nj max {dj,k}α2B

∗
j −Nnsd

α
ns,s2

B∗ns . In
some cases, Pgain is very large, which can be minimized by
optimizing B∗ns

locally (since, now measurement flows from
ns to s and dns,s < dj,k) as in the Step 5. IncreasingB∗ns

from
its current value tends to reduce Pgain toward zero and then a
higher B∗ns

provides less quantization error. After optimizing
B∗ns

, assign ns = s, increase the index m by one, and return
to Step 1 to repeat the process until we scan all the edges in T ,
that is, m = K. Notice that, each edge in T is scanned only
once. Finally, we calculate, in this case (14), let us call this
solution LLDO-AQ.
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Fig. 5: (a) Allocated Bj vs. the normalized Euclidean distance from a sensor to the sink node for Pmax = 10, (b) MSE performance, when activating a subset of
sensors for a given range of power budget Pmax and comparing their performance with the fixed quantization algorithm; given quantization levels from Bj = 1 to
Bj = 6, (c) MSE performance of the proposed and related algorithms for a given range of Pmax. Related algorithms are: LP-MF [4]; and PDE-EF [5].

4. SIMULATION RESULTS

We consider a WSN with n = 100 randomly deployed sensors.
We assume α = 4 and Nj = 1∀j in our communication cost
model fc(dj,k) < S0Njd

α
j,k2Bj . The measurement gain in our

example is assumed hj = 1/dβj,t with β = 2. Without loss
of generality, we assume that σ2

zj
= σ2

yj
= 1∀j and A = 1.

We tested our algorithms using 100 different network topolo-
gies and a range of power constraint values to each network
topology are provided. All simulation results are averaged over
these 100 different network topologies. In Fig. 5(a), we show
an example of bits per sample distribution using the MF and
EF schemes. It can be noticed that in the MF scheme the bit
distribution (marked by blue stars) is nearly uniform (that is,
all levels provided), whereas in the EF scheme sensors close to
the sink node (generally small number of hops, that is, small
normalizing distance) allows more bits per sample in order to
maintain small total estimation error.

A comparison between fixed and adaptive quantization is
shown in Fig. 5(b), where six different cases of fixed quantiza-
tion are taken from Bj = 1 to 6 in the fixed tree relaxation-
based algorithm [2]. Then, these six simulation results are
compared with the proposed approaches. It can be seen that our
adaptive quantization algorithms perform superior to the fixed
quantization. We consider two heuristic algorithms to com-
pare with our proposed algorithms, which are LP-MF [4], and
PDE-EF [5]. Algorithm LP-MF considers routing, but uses the
MF scheme, PDE-EF uses the EF scheme, but does not opti-
mize jointly all three metrics. An MSE from our FTR-AQ is
given by (14) and an improved MSE for our LDO-AQ is ob-
tained by Algorithm 2. Fig. 5(c) shows MSE performances
for LP-MF, PDE-EF, FTR-AQ, and LDO-AQ algorithms for a
given power budget range Pmax = 3 to 10. We can observe that
our approaches outperform the other related algorithms cited to
compare in this work. The performance of PDE-EF is close to
our approaches since it uses the EF scheme.

5. CONCLUSION

Most of the recent solutions that have been proposed, try to re-
duce the problem to a subset selection, ignoring the optimiza-
tion of the routing structure as well as source coding effectively.

However, optimizing the routing structure is an important met-
ric in the problem since in general, transmitting an information
that is faraway from the sink node requires more energy than
one that is close to it. Source coding also plays an important
role as can be seen in Fig. 5(a) that a sensor faraway from the
sink node requires few bits/sample in quantizing it’s measure-
ment when using the EF scheme.
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