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ABSTRACT

We consider direction-finding in partly calibrated arrays com-
posed of multiple identically oriented subarrays. The subar-
rays are assumed to possess a shift invariance structure that
can be exploited for search free direction of arrival (DoA)
estimation. We propose a fully distributed DoA estimation
scheme that is based on the averaging consensus algorithm,
in which the subarrays communicate only locally with their
neighboring subarrays to exchange local averages of their
measurements and received signal to iteratively compute
global estimates in the network. The proposed scheme elim-
inates communication bottlenecks and the need for a central-
ized computation center. Our algorithm is based on subspace
methods which is originally devised for DoA estimation in
centralized systems. We show that in our fully distributed
DoA estimation scheme, the number of jointly estimated di-
rections can be larger than the number identifiable by each
individual subarray.

Index Terms— Averaging consensus algorithm, subarray
systems, ESPRIT, distributed DoA estimation.

1. INTRODUCTION

DoA estimation of narrowband sources has attracted signifi-
cant attention [1], since it is applied in many array process-
ing applications including sonar, radar, and seismic explo-
ration. Subspace methods such as MUSIC [2], MODE [3] and
WSF [4] are computationally efficient direction finding meth-
ods that exhibit the super resolution DoA estimation property.
However, they can only be applied in fully calibrated sensor
arrays where the locations of all sensors are known. Other
subspace methods such as ESPRIT [5], RARE [6], Multi-
ple Invariant ESPRIT [7] and Multiple Invariant MUSIC and
MODE [8] can be used in partly calibrated arrays composed
of perfectly calibrated subarrays with unknown subarray dis-
placements. Our algorithm is based on the ESPRIT algorithm
which exploits the specific shift invariance structure of the
array to efficiently compute the parameters of interest in a
search-free procedure.

The original algorithms mentioned above are central-
ized, and require centralized processing of the measurements
recorded from all subarrays. Hence each subarray needs to

forward its measurements data to a computation center in
which the DoA algorithm is implemented. Due to transmit
power limitation, pathloss and interference the subarrays far
from the computation center will not be able to transfer their
measurements on a direct link to the computation center and
generally multi-hop communication may have to be estab-
lished to forward all the measurements to the computation
center. Thus, subarrays will forward their measurements to
adjacent subarrays which are located closer to the computa-
tion center. This requires the application of efficient routing
protocols and increases the communication load on the sub-
arrays located in the vicinity of the computation center which
renders them the communication bottlenecks. Therefore such
centralized multi-hop networks generally do not scale well as
adding new subarrays to the system may result in a complete
system breakdown. In this case, new communication routes
between the new subarrays and the computation center needs
to be found, which adds to the overall complexity. Further-
more, maintaining the routes is very difficult, for example in
case of sensor failure. These well-established drawbacks of
multi-hop communication motivate the use of decentralized
subspace estimation based on patch processing as in [9], or
decentralized subspace tracking as in [10] and [11]. In [9] and
[10] the authors show how their algorithms can be used for
DoA estimation in calibrated arrays. However according to
our best knowledge, decentralized DoA estimation in partly
calibrated arrays has not been considered yet.

This paper is organised as follows. In Section 2, the prob-
lem of DoA estimation is formulated and the signal model
is presented. Section 3 briefly describes the conventional
ESPRIT algorithm. In Section 4, the decentralized power
method [9] for distributed estimation of the signal subspace
is revised. Based on this we propose an averaging consen-
sus scheme referred to as decentralized ESPRIT (d-ESPRIT)
for DoA estimation in subarray sensor networks. Section 5
describes the averaging protocol used in the d-ESPRIT algo-
rithm. Finally, we will verify our algorithm by simulation.

We use lowercase and uppercase bold letters to denote
vectors and matrices, respectively. The transpose, the Her-
mitian transpose and the complex conjugation are denoted by
(.)T , (.)H and (.)∗, respectively. The Kronecker product is
denoted by ⊗.
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2. SIGNAL MODEL

We consider an arbitrary array composed of p subarrays.
The displacements between these subarrays assumed to be
unknown. For simplicity we will restrict our presentation to
arrays composed of identical and identically oriented uniform
linear subarrays 1 composed of m antennas separated by dis-
tance d. Consider that q ≤ p(m − 1) signals from stationary
narrowband far-field sources impinge the array from direc-
tions θi, i = 1, . . . , q. Let xxxk(t) denotes the measurements
vector of the kth subarray at time instant t ∈ N, then [5]

xxxk(t) = AAAksss(t) +nnnk(t), (1)

where sss(t) ∈ Cq is the vector of impinging signals, andAAAk ∈
Cm×q is the steering matrix, nnnk(t) ∈ Cm is the measurement
noise that is considered to be white Gaussian with variance
σ2. The measurements model for the whole array is

xxx(t) = AAAsss(t) +nnn(t), (2)

where xxx(t) = [xxxT1 (t), . . . ,xxxTp (t)]T , AAA = [AAAT1 , . . . ,AAA
T
p ]T and

nnn(t) = [nnnT1 (t), . . . ,nnnTp (t)]T .
The shift invariance property of each subarray can be ex-

pressed by grouping the antennas of each subarray into two
groups as depicted in Figure 1. Observe that by shifting the
first group by displacement d we obtain the second group.
Let us define two selection matrices, JJJ = [IIIm−1, 000m−1] and
JJJ = [000m−1, IIIm−1], where IIIm−1 is the m− 1×m− 1 iden-
tity matrix, and 000m−1 is a m − 1 × 1 vector containing zero
elements. Then the shift invariance property implies that [12]

AAAkΦΦΦ = JJJAAAkΦΦΦ = JJJAAAk = AAAk, (3)

where ΦΦΦ = diag{e−j2πd sin(θ1), . . . , e−j2πd sin(θq)} is the de-
lay matrix.

Fig. 1. shift invariance grouping in one subarray

3. THE ESPRIT ALGORITHM

In the conventional array processing scenario, it is assumed
that the snapshots of all subarrays are available at a central
computation node, where the ESPRIT algorithm [5] is carried
out. The eigendecomposition of the covariance matrixRRRxx =
E[xxx(t)xxxH(t)] can be written as

RRRxx = EEEsΛΛΛsEEE
H
s +EEEnΛΛΛnEEE

H
n , (4)

1Our algorithm can be extended to any shift invariance subarray structure.

where ΛΛΛs ∈ Rq×q and ΛΛΛn ∈ R(mp−q)×(mp−q) are diago-
nal matrices contain the eigenvalues of the signal and noise
subspaces, respectively, EEEs = [eee1, . . . , eeeq] ∈ Cmp×q and
EEEn = [eeeq+1, . . . , eeemp] ∈ C(mp−q)×q contain the signal and
noise subspaces, eee1, . . . , eeemp are the eigenvectors of the ma-
trix RRRxx corresponding to the eigenvalues λ1 ≥ . . . ≥ λmp.
We further partition the ith eigenvector as

eeei = [eeeTi,1, . . . , eee
T
i,p]

T , (5)

where eeei,k ∈ Cm corresponds to the kth subarray.
We define two signal subspaces corresponding to the two

groups of sensors introduced earlier as follows

EEEs = (IIIp ⊗ JJJ)EEEs, EEEs = (IIIp ⊗ JJJ)EEEs, (6)

where IIIp is the p× p identity matrix. Let

ΨΨΨ = (EEE
H

s EEEs)
−1EEE

H

s EEEs. (7)

Then according to [12], property (3) implies that the matrices
ΦΦΦ and ΨΨΨ are similar in the noise-free case, which means they
have identical eigenvalues. Consequently,

θi = sin−1(arg(ψi)/(2πd)), (8)

where ψi, i = 1, . . . , q are the eigenvalues of the matrix ΨΨΨ.
In practice, the true covariance matrix is unavailable.

However, its sample estimate can be calculated using

R̂RRxx =
1

N

N∑
t=1

xxx(t)xxxH(t), (9)

where N is the number of available snapshots of the array
output. We define ÊEEs, ÊEEs, ÊEEs, ÊEEn, êeei, êeei,k, Ψ̂ΨΨ as the estimates
ofEEEs,EEEs,EEEs,EEEn, eeei, eeei,k,ΨΨΨ based on (9), respectively.

4. DECENTRALIZED ESPRIT

In this section, we show how to calculate ÊEEs in decentralized
fashion without requiring explicit calculation of the matrix
R̂RRxx. Then, we suggest a scheme based also on averaging
consensus to enable each subarray to access the matrix Ψ̂ΨΨ,
consequently it can estimate the DoAs of the q sources.

4.1. Decentralized Eigendecomposition

The decentralized eigendecomposition using the power method
is proposed in [9], here we adapt this method to our special
array structure.

Using the power method [13, p. 330] to calculate êee1 iter-
atively, we can write at the (n+ 1)th iteration

êee1(n+ 1) = R̂RRxxêee1(n). (10)
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Substituting (9) into (10) we find

êee1(n+ 1) =

(
1

N

N∑
t=1

xxx(t)xxx(t)H
)
êee1(n)

=
1

N

N∑
t=1

xxx(t)at(n),

(11)

where at(n) = xxx(t)Hêee1(n). If the N scalars at(n), t =
1, . . . , N are available for every subarray, then each subar-
ray can calculate m entry of the eigenvector êee1(n+ 1), these
entries are denoted as the vector êee1,k(n + 1), see Equation
(5). From (11) it is obvious that êee1,k(n+ 1) can be calculated
locally at the kth subarray using the following equation

êee1,k(n+ 1) =
1

N

N∑
t=1

xxxk(t)at(n), (12)

Now we rewrite the scalar at(n) as

at(n) = xxx(t)Hêee1(n) =

p∑
k=1

xxxHk (t)êee1,k(n)

= p

(
1

p

p∑
k=1

at,k(n)

)
= p AC

1≤k≤p
(at,k(n)),

(13)

where at,k(n) = xxxHk (t)êee1,k(n). Each subarray k has access
at each iteration to êee1,k(n) so it can calculate at,k(n) locally.
Then all the subarrays carry out an averaging consensus oper-
ation to calculate at(n), we denote this Averaging Consensus
operation as AC

1≤k≤p
(at,k(n)). In Section 5, we revise the av-

eraging consensus algorithm that can be used to compute (13)
in a fully distributed iterative manner by only applying local
communication between the neighboring subarrays.

After sufficient number of iterations Ipm (where pm
stands for power method) the estimated vector êee1(Ipm)
converges to the eigenvector corresponding to the largest
eigenvalue [13]. It is further required to normalize this vector
using êee1 = êee1(Ipm)/ ‖êee1(Ipm)‖. The normalization factor
can be calculated in the context of the averaging consensus
algorithm, hence

‖êee1(Ipm)‖2 =

p∑
k=1

êeeH1,k(Ipm) êee1,k(Ipm)

= p AC
1≤k≤p

(êeeH1,k(Ipm) êee1,k(Ipm)).

(14)

Let the matrix ÛUU j−1 = [êee1, . . . , êeej−1] ∈ Cpm×(j−1) be
the concatenation of j − 1 estimated eigenvectors. The jth
eigenvector is estimated using the following iteration [9]

êeej(n+ 1) = (III − ÛUU j−1ÛUU
H

j−1)R̂RRxxêeej(n)

= êee′j(n)− ÛUU j−1ÛUU
H

j−1êee
′
j(n),

(15)

where êee′j(n) = R̂RRxxêeej(n). êee′j(n) can be calculated similar to

êee1(n). The term ÛUU j−1ÛUU
H

j−1êee
′
j(n) can be rewritten as

ÛUU j−1ÛUU
H

j−1êee
′
j(n) =

j−1∑
i=1

êeei

(
êeeHi êee

′
j(n)

)
=

j−1∑
i=1

êeei

(
p AC
1≤k≤p

(
êeeHi,kêee

′
j,k(n)

))
.

(16)

Thus, the calculation of ÛUU j−1ÛUU
H

j−1êee
′
j(n) requires additional

(j − 1) averaging consensus operations [9].
Note that for the first eigenvector each iteration of the

power method required N parallel averaging consensus op-
erations, and one averaging consensus for the normalization.
For the jth eigenvector (N + j − 1) parallel averaging con-
sensus operations are required at each iteration, and one av-
eraging consensus for the normalization. Then, to calculate
the q eigenvectors using the decentralized power method the
required consensus operations are

Neig =

q∑
i=1

(
Ipm(N + i− 1) + 1

)
= O(qIpmN). (17)

We want to emphasis that at the end of this decomposition
each subarray k stores êee1,k, . . . , êeeq,k.

4.2. Decentralized ESPRIT

In this section we show how the matrix Ψ̂ΨΨ can be calculated
using averaging consensus.

Multiplying both sides of equation (7) by ÊEE
H

s ÊEEs, we find

(ÊEE
H

s ÊEEs)Ψ̂ΨΨ = ÊEE
H

s ÊEEs
(18)

Let B̂BB = (ÊEE
H

s ÊEEs) and ŴWW = ÊEE
H

s ÊEEs, then (18) becomes

B̂BBΨ̂ΨΨ = ŴWW. (19)

Each entry of the matrix B̂BB can be written as

[B̂BB]i,j =

p∑
k=1

(JJJêeei,k)H(JJJêeej,k)

= p AC
1≤k≤p

((JJJêeei,k)H(JJJêeej,k)).

(20)

Similar as in the previous section each subarray locally com-
putes the scalar (JJJêeei,k)H(JJJêeej,k). Then averaging consensus
is carried out such that all subarrays learn about the entry
[B̂BB]i,j . Thus, using q2 parallel averaging consensus opera-
tions (one for each element in the matrix B̂BB) all the subarrays
will have access to B̂BB. Similar as above entries of ŴWW are given
as

[ŴWW ]i,j =

p∑
k=1

(JJJêeei,k)H(JJJêeej,k)

= p AC
1≤k≤p

((JJJêeei,k)H(JJJêeej,k)),

(21)
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which can be calculated using averaging consensus.
Thus, all the subarrays have local access to the entries

of the matrices ŴWW and B̂BB. Therefore, Equation (19) can be
solved locally in each subarray to obtain estimates of Ψ̂ΨΨ. Fi-
nally, in each subarray DoA estimates can be computed ac-
cording to (8). We refer to this algorithm as the decentralized
ESPRIT (d-ESPRIT).

The following three important properties of the d-ESPRIT
algorithm should be emphasised. i) First, d-ESPRIT is a fully
distributed algorithm, where sensors communicate only to
compute averaging consensus. The total communication cost
of this algorithm is determined by O(qIpmN), which is inde-
pendent from the number of subarrays. Consequently, adding
new subarrays does not increase the communication load at
the individual subarrays, which is the case in the centralized
ESPRIT where multi-hop networks are involved. ii) Second,
d-ESPRIT follows the same steps as conventional ESPRIT,
which means that d-ESPRIT is able to estimate the directions
of up to (m − 1)p sources, while each subarray alone can
estimate only the directions of (m − 1) sources. iii) Third,
the estimation of the signal subspace which is carried out in
the first step of d-ESPRIT can be easily replaced by subspace
tracking methods while keeping the estimation of the matrix
ΨΨΨ as explained above. In other words, our algorithm can be
easily extended to use the decentralized subspace tracking
methods which are introduced in [10] and [11] instead of
using patch processing.

5. AVERAGING CONSENSUS

The d-ESPRIT algorithm uses averaging consensus in Equa-
tions (13, 14, 16, 20, 21) to calculate the average of p scalar
values, where each value is stored on different subarray. In
this section, we summarize the iterative averaging consensus
algorithm that have been used in the simulation in Section 6 to
achieve this calculations. This algorithm is presented in full
details in [14].

It is assumed that each subarray can communicate with
a set of subarrays that are located in its vicinity. This set is
called the neighboring set, and for the kth subarray we denote
it as Nk. We also denote the values that we want to aver-
age as xxx(0) = [x1(0), . . . , xp(0)]T ∈ Cp, where the state
xk(0) is stored at the kth subarray. For simplicity we assume
at each iteration (n) that each subarray k broadcasts its cur-
rent state xk(n), and receives the states of all its neighbors,
{xi(n)}i∈Nk

. Then it updates its state using the following
simple iteration

xk(n+ 1) = xk(n) +
∑
i∈Nk

αk,i (xi(n)− xk(n)),

αk,i =
1

max(|Ni|, |Nk|)
,

(22)

where |Ni| is the degree of the ith subarray, which is the car-
dinality of the set Ni. After sufficient number of iterations

Iac (where ac stands for Averaging Consensus), the states
xk(Iac), k = 1, . . . , p will converge to the average of the ini-
tial states xxx(0) = 1

p

∑p
k=1 xk(0), see [14].

6. SIMULATION RESULTS

We used a network of p = 6 subarrays, each of which con-
sists of two antennas separated by half a wavelength. The
selection matrices in this case are JJJ = [1, 0] and JJJ = [0, 1]
The neighboring sets are N1 = {2, 3}, N2 = {1, 3}, N3 =
{1, 2, 4}, N4 = {3, 5, 6}, N5 = {4, 6}, and N6 = {4, 5}.
Each subarray can communicate only with its neighbors. Two
sources are impinging on this network from directions -5 and
5 degrees. The measurements are affected by white Gaus-
sian noise SNR = −2 dB. Each subarray collects N = 100
snapshots. We compare the Root Mean Square Error (RMSE)
calculated over 1000 Monte Carlo runs for three implemen-
tations of ESPRIT. i) The first implementation is centralized
and uses MATLAB “eig(.)” command2 to estimate the sig-
nal subspace. This implementation is used to benchmark the
power method as it does not depend on Ipm, we call this
implementation CB (Centralized Benchmark). ii) The sec-
ond implementation is also centralized, but it uses the power
method to estimate the signal subspace, we refer to this imple-
mentation as CPM (Centralized Power Method). iii) The third
implementation is the d-ESPRIT algorithm, which is fully
distributed implementation that uses the power method and
averaging consensus.
In Figure 2, the averaging consensus is run for Iac = 5 iter-
ations, and the RMSE is plotted as a function of Ipm. Note
that CB does not depend on Ipm. However, increasing Ipm
decreases the RMSE in the other two implementations. For
Ipm > 4, it is clear that CPM and d-ESPRIT have converged,
and the RMSE of d-ESPRIT is larger because the consensus
averaging needs more than Iac = 5 iterations to converge.
This will become clearer after we explain the second simula-
tion.
In Figure 3, the number of the power method iterations is
fixed to Ipm = 4, and the RMSE is plotted as a function of
Iac. Note that the first two implementations CB and CPM do
not depend on Iac since they are both centralized. For CPM,
the RMSE is still a little bit larger than CB because of the
limited number of the power method iterations. Following d-
ESPRIT, we can see that its RMSE converges to the RMSE
of CPM after Iac = 6 iterations. If large Ipm and Iac are
used, then d-ESPRIT will have the same performance as CB,
which is the best performance expected from d-ESPRIT, how-
ever, the communication cost will increase linearly with both
iterations Ipm and Iav . Thus, d-ESPRIT offers an additional

2For a Hermitian matrix AAA, MATLAB uses the LAPACK function
ZHEEV to compute the eigendecomposition ofAAA. ZHEEV first reducesAAA to
real tridiagonal form, using unitary similarity transformations, and then the
QR algorithm is applied to the tridiagonal matrix to compute the eigenvalues
and (optionally) the eigenvectors, for more details see [15] and [13].
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Fig. 2. RMSE as a function of the power method iterations.
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Fig. 3. RMSE as a function of averaging consensus iterations.

advantage, which is a compromise between communication
cost and RMSE.

7. CONCLUSIONS

We introduced the d-ESPRIT algorithm for DoA estimation in
partly calibrated arrays. This algorithm combines the advan-
tages of the conventional ESPRIT algorithm and averaging
consensus algorithm to achieve fully distributed DoA estima-
tion with computation and communication cost independent
from the total number of subarrays. However, the computa-
tion and communication cost of d-ESPRIT is still dependent
on the number of sources, and an ideal implementation which
avoids this drawback is yet to be achieved.
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