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ABSTRACT

In this paper, we propose a distributed method to control the

connectivity of wireless ad hoc networks taking into account

the impairments resulting from the propagation through real-

istic channel models incorporating fading, noise and packet

collision. We illustrate a mechanism to estimate the alge-

braic connectivity of the expected graph and we show that

the method is robust against random packet drops. Then, we

show how the algebraic connectivity of the expected graph

Laplacian depends on the transmit power of each node. The

interesting result is that there exists an optimal power that

maximizes the algebraic connectivity, as a tradeoff between

the degree of each node and the number of collisions. Finally,

we propose a distributed algorithm to evaluate the optimal

transmission power that maximizes the network connectivity

in the presence of realistic MAC protocols.

Index Terms— Ad hoc networks, expected connectivity,

collisions, stochastic approximation.

1. INTRODUCTION

The diffusion of information through a network presumes

connectivity of the network. In many practical examples, this

connectivity can only be assumed to hold in probability be-

cause the links among the nodes may be on or off depending

on channel conditions. In most applications, channel vari-

ability may depend on several factors, such as mobility of

the nodes, as in vehicular networks, channel fading due to

propagation over multipath channels, packet collisions due

to random medium access control (MAC) strategies working

on a collision avoidance regime, etc. Furthermore, many

distributed processing algorithms running over a graph, such

as consensus algorithms or diffusion algorithms for example,

have a convergence time strongly dependent on the graph

connectivity [1]-[5]. It is then of interest to look at distributed

mechanisms to control network connectivity in the presence

of realistic channel models. Spectral graph theory [6] has

been demonstrated to be a very powerful tool for topology

This work has been supported by TROPIC Project, Nr. 318784.

inference. The eigenvalues and/or eigenvectors of the Lapla-

cian matrix of the graph have been exploited, e.g., to estimate

the connectivity of the network [7], to find densely connected

clusters of nodes [8]-[9], and to search for potential links

that would greatly improve the connectivity if they would be

established [10]. In all these works, it was argued and demon-

strated that the most useful eigenvector for graph partitioning

is the one corresponding to the second-smallest eigenvalue

of the Laplacian matrix. This eigenvalue is referred to as the

algebraic connectivity and its eigenvector is often referred to

as the Fiedler vector [7]. Most of the previous works assumed

ideal communications among the network nodes. However,

in a realistic scenario, the wireless channel is affected by

random fading and additive noise, which induce errors in

the received packets. Furthermore, realistic random medium

access control (MAC) protocols may determine packet colli-

sions during the exchange of data among the nodes. In such

a case, the receiving node could request the retransmission of

the erroneous packets, but this would imply random delays

in the communication among the nodes and it would be com-

plicated to implement over a totally decentralized system. It

is then of interest to analyze networks where the erroneous

packets are simply dropped, without requiring a retransmis-

sion. In this paper, we investigate on the effect of collisions,

induced by a realistic random medium access control proto-

col, on the connectivity of wireless ad-hoc networks. The

contribution of this paper is twofold. First, we show how the

presence of realistic medium access control protocols intrin-

sically limits the connectivity of a wireless ad-hoc network

due to the inevitable presence of collisions. It turns out that,

if nodes choose a too large transmission power, the network

connectivity may be heavily degraded due to an increase in

the collision probability. Second, it is provided a distributed

stochastic approximation method aimed at finding the maxi-

mum of the connectivity in the presence of collisions.

2. REVIEW OF ALGEBRAIC GRAPH THEORY

We consider a network composed of N nodes interacting ac-

cording to a communication topology. The interaction among

EUSIPCO 2013 1569747535
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the nodes is modeled as an undirected graph G = (V,E),
where V = 1, 2, ..., N denotes the set of nodes and E ⊆
V × V is the edge set. The structure of the graph is described

by a symmetric N ×N adjacency matrix A := {aij}, whose

entries aij are either positive or zero, depending on wether

there is a link between nodes i and j or not, i.e., if the dis-

tance between nodes i and j is less than a coverage radius,

which is dictated by nodes’ transmit power and the channel

between them. The set of neighbors of a node i is Ni, de-

fined as Ni = {j ∈ V : aij > 0}. Node i communicates

with node j if j is a neighbor of i (or aij > 0). Denoting by

dii =
∑N

j=1
aij the degree of node i, the degree matrix D is

a diagonal matrix with entries dii that are the row sums of the

adjacency matrix A. The graph Laplacian L is defined as

L = D −A. (1)

We denote by λi(L), i = 1, . . . , N , the eigenvalues of L, or-

dered in increasing sense. The N × N matrix L always has,

by construction, a null eigenvalueλ1(L) = 0, with associated

eigenvector 1N composed of all ones. For a connected graph,

the nullspace of L has dimension 1 and it is spanned by the

vector 1. The quantity λ2(L) is known as the algebraic con-

nectivity of the graph. This eigenvalue is greater than 0 if and

only if G is a connected graph.

Random link failures : In a realistic communication scenario,

the packets exchanged among network nodes may be received

with errors, because of collisions, channel fading or noise.

The retransmission of erroneous packets can be incorpo-

rated into the system, but packet retransmission introduces a

nontrivial additional complexity in decentralized implemen-

tations and, more importantly, it also introduces an unknown

delay and delay jitter. It is then of interest to examine simple

protocols where erroneous packets are simply dropped. We

take into account random packet dropping by modeling the

coefficient aij describing the network topology as statisti-

cally independent random variables. Then, the Laplacian of

the graph varies with time as a sequence of i.i.d. matrices

{L[k]}, which can be written, without loss of generality, as

L[k] = L̄+ L̃[k] (2)

where L̄ denotes the mean matrix and L̃[k] are i.i.d. pertur-

bations around the mean. We do not make any assumptions

about the link failure model. Although the link failures and

the Laplacians are independent over time, during the same it-

eration, the link failures can still be spatially correlated.

3. ESTIMATION OF ALGEBRAIC CONNECTIVITY

Since in our setting, the network graph is random due to the

presence of random packet drops due to either decoding errors

or packet collisions, in the following, we illustrate a method

to evaluate the algebraic connectivity in the presence of ran-

dom packet drops, which is amenable for distributed imple-

mentation, as recently proposed in [11]. This method will be

instrumental to setup our connectivity control strategy based

on power control.

Let us consider a random graph G[k], obtained by using

a transmitted power p at each node. We define the transition

matrix W [k], at time k, as:

W [k] = I − εL[k] = W̄ + W̃ [k] (3)

where W̄ = I − εL̄ is the mean matrix, W̃ [k] = −εL̃[k] are

i.i.d. fluctuations around the mean, and 0 < ε < 2/λN(L).
The eigenvalues of the expected Laplacian matrix L̄ are di-

rectly related to those of the expected consensus matrix W̄ in

(3) through the relation

λi(L̄) = (1− λN+1−i(W̄ ))/ε (4)

and, in particular, the algebraic connectivity is given by

λ2(L̄) = (1 − λN−1(W̄ ))/ε. (5)

Now, under the assumption that every instance of the random

matrix W [k] in (3) is doubly stochastic, we deflate the origi-

nal matrix W [k], obtaining the matrix B[k] given by:

B[k] = W [k]−
1

N
11

T

= W̄ −
1

N
11

T + W̃ [k] = B̄ + B̃[k] (6)

where B̄ = W̄ −
1

N
11

T and B̃[k] = W̃ [k] = −εL̃[k]. In

this way, the maximum eigenvalue of the deflated matrix B̄

coincides with the second largest eigenvalue of W̄ . The main

steps of the algorithm are listed in the following.

Stochastic power iteration method: Initializex[0], y[0], and

z[0] randomly. Then, perform the following steps for k ≥ 0:

1. Build the deflated matrix B[k] = W [k]−
1

N
11

T ;

2. Evaluate the estimate y[k + 1] of λN−1(W̄ ) at time

k + 1 as:

ȳ[k] =
xT [k]B[k]x[k]

xT [k]x[k]
(7)

y[k + 1] = y[k] + α[k] (ȳ[k]− y[k]) (8)

where α[k] is a step-size sequence satisfying (11);

3. Perform the following power iteration

x[k + 1] =
B[k]x[k]

‖B[k]x[k]‖
; (9)

4. Compute the estimate z[k + 1] of λ2(L̄) at time k as:

z[k + 1] = (1− y[k + 1])/ε; (10)
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5. Go to step 1 and repeat until convergence.

The stochastic power iteration method in (7)-(9) computes an

estimate for the largest eigenvalue of the expected matrix B̄,

which is directly related to the second eigenvalueλ2(L̄) of the

expected Laplacian through (10). To obtain convergence of

the stochastic power iteration method, the step-size sequence

α[k] in (8) must satisfy the conditions:

α[k] > 0,

∞
∑

k=0

α[k] = ∞,

∞
∑

k=0

α2[k] < ∞. (11)

Conditions (11) are standard in stochastic approximation

[12]; the effect of the step-size in (11) is to drive to zero the

variance of the additive disturbance due to the presence of

link failures. Then, the convergence of the iterative procedure

is determined only by the expected graph of the network.

In [11], we proved that the sequence z[k] generated in (10)

by the stochastic power iteration algorithm converges al-

most surely to the second smallest eigenvalue of the expected

Laplacian matrix of the graph, i.e.,

lim
k→∞

z[k] = λ2(L̄), almost surely (w.p.1). (12)

The stochastic power iteration method has been described up

to now in a centralized fashion. In [11], we showed how to im-

plement such a method using a decentralized approach based

on average consensus [3].

4. CONNECTIVITY OF WIRELESS AD-HOC

NETWORKS WITH REALISTIC MAC

The method illustrated above converges to algebraic connec-

tivity of the expected Laplacian. It is then of interest to es-

tablish the relation between such a value and the value ob-

tained under ideal channel propagation conditions. In a real-

istic communication scenario, nodes communicate with each

other by accessing to a shared channel according to a spec-

ified MAC protocol. Let us assume that, in the considered

wireless ad-hoc scenario, each node has M wireless channels

that are dedicated to the exchange of data with its own neigh-

bors. To establish a communication, a node then randomly

selects one of these channels independently of the choices of

its neighbors. Let us further assume that the nodes are de-

ployed according to a random geometric graph (RGG) model

[13]. It is well known that asymptotically, as the number of

nodes goes to infinity, RGG networks tend to satisfy a regu-

larity condition, i.e., each node tends to have, asymptotically

as the number of nodes tends to infinity, the same number d
of neighbors, on average. The average number d of neigh-

bors depends on the coverage radius of each node, which

is dictated by the transmitted power and the channel condi-

tions. Let us assume a simple free-space propagation model

so that the power received by a node is related to the transmit-

ted power as PR = PT /r
2, where r is the covered distance.
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Fig. 1: Probability of correct packet reception versus the

power transmitted by each node, for different number M of

available channels.

Now, setting a minimum threshold value Pth for the power

at the receiver node, the coverage radius is simply obtained

by inverting the previous expression as r2 = PT /Pth. The

average number d of neighbors is then related to the covering

radius and, consequently, to the transmitted power PT , as

d = πr2̺ = π
PT

Pth

̺ (13)

where ̺ is the spatial density of nodes inside a circle of area

πr2. In this setting, it is clear that the number M of chan-

nels used to establish a communication must be designed with

respect to the average number d of neighbors, in order to

keep the probability to have a collision among the commu-

nications of two nodes sufficiently small. Assuming indepen-

dence among the channel selections of different nodes and

exploiting (13), the probability that a packet is correctly ex-

changed over the selected channel is given by

pc(M,PT ) =

(

M − 1

M

)d

=

(

1−
1

M

)µPT

(14)

where µ = π̺/Pth. A numerical example is shown in Fig.

1, where we illustrate the behavior of the probability in (14)

versus the power transmitted by each node, for different val-

ues of the number of channels M . The simulation considers

a network composed of N = 400 nodes randomly deployed

over a geographic area of 104 m2. The threshold power value

at the receiver node is given by Pth = 0.01 mW. As expected,

from Fig. 1 we can notice how the probability to establish

correctly a communication link gets worse by increasing the

transmitted power PT , because it translates in having more

neighbors which to communicate with, whereas, for a fixed

transmitted power, it of course improves by taking a larger

number of channels M .
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Fig. 2: Algebraic connectivity of the expected graph λ2(L̄)
versus the power transmitted by each node, for different num-

ber M of available channels.

In an ideal communication case where no collisions occur,

the increment of the power transmitted by each node leads to

a monotonic increment of the network connectivity. Thus, in

an ideal case, it is always convenient to increase the power

in order to increase the connectivity of the network, until full

connectivity is reached. However, in a real communication

scenario, the presence of collisions due to the adoption of a

random medium access protocol, e.g. the one we have intro-

duced before, makes the graph describing the network topol-

ogy a random graph, where each link is on with a probability

given by (14). It is then of interest to check the effect of col-

lisions on the connectivity of the expected graph, which is

actually the effective connectivity of the network. Thus, con-

sidering RGG networks and assuming the number of nodes

is sufficiently high to approach a regularity condition of the

graph, we have

λ2(L̄(PT )) ≃ pc(M,PT ) · λ2(L(PT )). (15)

Intuitively, this happens because all the coefficients of the

expected adjacency matrix Ā can be approximated as āij ≃
pc(M,PT ), i.e., each communication link has almost the

same probability to be established, if the number of nodes

is sufficiently high to approach a regularity condition of the

graph. An example is given in Fig. 2, where we show the

behavior of the algebraic connectivity of the expected graph

λ2(L̄) versus the power transmitted by each node, for differ-

ent number M of available channels. The simulation settings

are the same as before. As we can notice from Fig. 2, λ2(L̄)
shows approximately a quasi-concave behavior with respect

to the transmitted power PT . In fact, at low power values,

the algebraic connectivity of the expected graph increases

because the number of neighbors of each node increases.

However, as power goes above a certain threshold, the num-

ber of neighbors becomes too high and the probability of

collision increases, thus leading to a reduction of the overall

connectivity of the network. From Fig. 2, as expected, we

also notice how, increasing the number of available channels

M for a fixed transmitted power, the connectivity of the ex-

pected graph improves. The behavior of λ2(L̄) determines

that there is an optimal transmitted power that nodes should

use to maximize the connectivity of the expected graph. An

increment of the power with respect to this threshold value

would lead to a waste of energy due to the effect of col-

lisions, which becomes the dominant effect that drives the

effective connectivity to zero. In summary, while in an ideal

communication scenario nodes would always improve the

network connectivity by increasing their transmitted power,

considering a realistic random MAC, a too large transmission

power may degrade the connectivity due to an increase in the

collision probability.

5. DISTRIBUTED MAXIMIZATION OF EXPECTED

GRAPH’S CONNECTIVITY

In the previous section, we have shown that, for a sufficiently

large number of nodes composing the network, the behav-

ior of the algebraic connectivity of the expected graph λ2(L̄)
versus the power p transmitted by each node is approximately

continuous and unimodal, thus leading to the presence of a

unique maximum point (Fig. 2). The goal of this section is to

find the optimal power value p∗ that maximizes the connec-

tivity of the expected graph, without assuming knowledge of

the analytical relation between λ2(L̄) and p. The method is

based on a stochastic algorithm that approximates the deriva-

tive of the function on the basis of noisy measurements of

λ2(L̄). For a given power value p, using the stochastic power

iteration method in (7)-(9), it is possible to achieve an esti-

mate ẑ(p) of the second smallest eigenvalue of the expected

Laplacian matrix in a totally distributed fashion. In practice,

stopping the iterative method in (7)-(9) at a finite number of

iterations, induces an inevitable estimation error, so that we

can write

ẑ(p) = λ2(L̄(p)) + ξ (16)

where ξ is a realization of a zero-mean random variable with

bounded variance σ2
ξ .

Now, exploiting the noisy measurements in (16), we can

build a stochastic approximation Kiefer-Wolfowitz (KW)

method [12] that can be used to attempt to find the maximum

of the function λ2(L̄(p)). The algorithm is run in parallel by

each node in the network, which updates its own transmitted

power according to the recursive rule:

p[t+ 1] = p[t] + α[t]
ẑ(p[t] + c[t])− ẑ(p[t]− c[t])

2c[t]
(17)

where p[0] is chosen at random, and α[t] and c[t] are two pos-
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Fig. 3: Algebraic connectivity of the expected graph λ2(L̄)
versus iteration index, for different number N of nodes.

itive sequences that satisfy (11) and the further conditions

c[t] → 0,

∞
∑

t=0

α2[t]

c2[t]
< ∞. (18)

For any t, the stochastic power iteration method in (7)-(9)

must be run twice in order to get ẑ(p[t] + c[t]) and ẑ(p[t] −
c[t]). The procedure in (17) is then repeated until a conver-

gence criterion is satisfied.

A numerical example is shown in Fig. 3, where we il-

lustrate the behavior of the algebraic connectivity of the ex-

pected graph λ2(L̄) versus iteration index, for different values

of the number of network nodes N , obtained by using the KW

method in (17). The theoretical values of the maximum con-

nectivity are also reported for comparison purposes. The sim-

ulation considers a network composed of N nodes randomly

deployed over a geographic area of 104 m2. The threshold

power value at the receiver node is given by Pth = 0.01 mW.

The number of channels is set to M = 15. As we can no-

tice from Fig. 3, when the number of nodes is sufficiently

large, the KW method in (17) is able to find the maximum

of λ2(L̄(p)) in a few iterations. At the same time, reducing

the number of nodes in the network, the behavior of λ2(L̄(p))
becomes less continuous and unimodal. This implies that the

algorithm in (17) can get stuck in some local maximum, thus

explaining the gap between the theoretical maximum value

and the KW method in Fig. 3, at low number of nodes N .

6. CONCLUSIONS

In this paper we have studied the effect of a realistic random

medium access control protocol on the connectivity of wire-

less ad-hoc networks. It has been shown how the presence

of collisions limits the connectivity of a wireless ad-hoc net-

work and, contrarily to what is typically believed, by increas-

ing the covering radius of each node, the network connectiv-

ity may be heavily degraded due to an increase in the colli-

sion probability. In particular, numerical results show that,

for sufficiently large number of nodes, the behavior of the al-

gebraic connectivity of the expected graph λ2(L̄) versus the

power transmitted by each node is approximately continuous

and unimodal. Building on such a result, we have proposed a

distributed Kiefer-Wolfowitz stochastic approximation algo-

rithm to find the transmit power that maximizes the expected

connectivity in the presence of collisions.
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