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DISTRIBUTED FILTERS FOR BAYESIAN NETWORK GAMES
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ABSTRACT
We consider a repeated network game where agents’ utilities are
quadratic functions of the state of the world and actions of all
the agents. The state of the world is represented by a vector on
which agents receive private signals with Gaussian noise. We
define the solution concept as Bayesian Nash equilibrium and
present a recursion to compute equilibrium strategies locally if
an equilibrium exists at all stages. We further provide conditions
under which a unique equilibrium exists. We conclude with
an example of the proposed recursion in a repeated Cournot
competition game and discuss properties of convergence such
as efficient learning and convergence rate.

Index Terms— repeated network games, distributed algo-
rithms, Bayesian learning

I. INTRODUCTION

The generic model of Bayesian games over networks includes
a state of the world on which agents have partial information,
and individual utility functions that depend on the state, indi-
vidual action and actions of other agents. In iterative learning
models, agents with asymmetric information repeatedly make
observations from their neighbors, infer about the state of the
world and take actions. The normative model of learning in
networks assumes that agents are rational. A natural model for
rationality in uncertain environments is that agents are Bayesian
in the way they form their beliefs and act optimally with respect
to their individual utility functions and beliefs. In this paper,
we consider a Bayesian network game with quadratic individual
utility functions. The optimal behavior is defined by the Bayesian
Nash Equilibrium (BNE).

The main goal in iterative learning models is to characterize
convergent behavior of the population and determine the transient
dynamics of individual rational behavior. However, the rational
behavior imposes an overwhelming computational burden on
agents even for small sized networks [1]. This intractability
has led to the study of simplified learning models with ‘non-
Bayesian’ agents, payoffs that depend only on self action and
the state of the world (pure information externality), or specific
signal and network structures. In ’non-Bayesian’ models, agents
are assumed to make inferences on the state of the world
according to some heuristic rule [2]. In models with purely
informational externalities, the actions of other agents do not
affect self payoff. This simplifies the analysis as agents’ optimal

Work in this paper is supported by ARO P-57920-NS, NSF CAREER CCF-
0952867, NSF CCF-1017454, ONR MURI “Next Generation Network Science”,
and AFOSR MURI FA9550-10-1-0567.

actions are just a function of their belief of the world. Even in this
case, without any structural assumptions on information available
to agents, only asymptotic analysis of the learning dynamics
with rational agents is possible [3], [4]. In learning with pure
informational externalities, there exists explicit characterization
of rational behavior when the signals are Gaussian [1] or when
the network structure is a tree [5]. In [6], we provide an
asymptotic analysis of learning dynamics when the payoffs of
agents are a quadratic function of actions of other agents, i.e.,
when there are both information and payoff externalities. In [7],
we consider the same utility function and provide a local filter
that propagates beliefs and computes equilibrium actions when
agents’ initial estimate of the scalar state of the world follows a
Gaussian distribution. In this paper, we show that the proposed
local filter extends to the case when state of the world is a vector.
Additionally, we provide conditions imposed on the quadratic
utility function for existence and uniqueness of the BNE at each
step of the game.

Specifically, we consider an iterative learning scenario where
each agent makes initial private observations of the vector state
of the world that is corrupted by additive Gaussian noise (Section
II). We define the BNE notion to characterize myopic optimal
behavior of the agents (Section II-A). We show that the posterior
distribution of private signals remain Gaussian for all agents and
equilibrium strategy is linear in estimates of private signals at
each stage if there exists a BNE (Theorem 1). Then we show
that when the Hessian of the corresponding Bayesian potential
function is symmetric and positive definite, BNE is unique
(Proposition 1). Furthermore, we provide a filter in which beliefs
are updated in a Bayesian way and BNE actions are computed
locally (Section IV). We close the paper with a numerical
example on a Cournot competition game where the state of the
world is 2-dimensional and discuss convergence rate of the local
filter (Section V).

II. BAYESIAN NETWORK GAMES

We consider games with incomplete information in which a
population V = 1, . . . , N composed of agents in a network
repeatedly choose actions and receive payoffs that depend on
their own actions, a real-valued parameter θ ∈ Rm for m ≥ 1,
and actions of everyone else. An undirected connected network
with nodes V and edge set E restricts the information flow.
That is, agent i can only exchange information with neighboring
agents n(i) = {j : {j, i} ∈ E} that form an edge with it. We
use d(i) to denote the degree of agent i, that is, the cardinality
of the set n(i).
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The parameter θ is unknown to agents. At time t = 0, each
agent receives initial private signal xi ∈ Rm,

xi = θ + εi (1)

where the additive noise term εi ∈ Rm is multivariate Gaussian
with zero mean and variance-covariance matrix Ci ∈ Rm×m.
We use xi[n] to denote the nth private signal of agent i where
n ≤ m. We assume that private signals are independent among
agents. We define the set of all private signals as

x := [xT1 , . . . ,x
T
N ]T , (2)

where x ∈ RNm×1.
At each stage t = 0, 1, 2, . . . , agent i takes action ai(t) ∈ Rm

and receives a payoff that is quadratic in actions of all agents
and state of the world,

ui(ai, {aj}j∈V \i,θ) = −1

2
aTi ai +

∑
j∈V \{i}

aTi Bijaj + aTi Dθ, (3)

where constants Bij and D belong to Rm×m.
The payoff in (3) depends on actions of other agents. Hence,

agent i has to reason about not only the state of the world but
also behavior of other agents based on the available information.
In this paper, we require that agents can observe actions of their
neighbors at each stage. We define the information available to
agent i at time t as his history hi,t := {hi,t−1,an(i)(t − 1)}
where the initial history is his private signal, hi,0 = {xi}. The
behavior of agent i is determined by his information and strategy,
that is, the strategy of agent i specifies the actions agent i takes
at every stage of the game as a function of the observed history.
Formally, a strategy for agent i denoted by σi is a sequence of
functions (σi,τ )τ=0,...,∞ where σi,t : hi,t 7→ ai(t). We use σ to
denote the strategy profile of all agents {σi}i∈V . The strategy
profile played up to time t is defined as σ0:t. Agents’ strategies
are assumed to be common knowledge which implies that agent
i can determine j’s behavior at time t exactly if agent i is given
hj,t. As a result, reasoning about behavior of other agents is
equivalent to reasoning about information of other agents.

II-A. Equilibrium
Let P denote agents common prior over the state of the world

and private signals, that is, P = µθ×µx1 · · ·×µxn , where µθ is
the uniform distribution over Rm and µxi is the θ mean normal
distribution with variance given by Ci. We denote the expectation
operator corresponding to P with E[·]. Since strategies map
histories to actions and actions played determine histories in
turn, strategies up to time t, σ0:t−1, induce a probability on
the histories at time t together with the prior P. We denote
the probability induced by a strategy at time t as Pσ0:t−1

and
the corresponding expectation operator as Eσ0:t−1

[·]. Given a
strategy profile σ, the best response of agent i at time t to
the strategies of other agents {σj,t}j∈V \i is a random function
BRi,t : Rm(N−1) → Rm defined as

BRi,t({σj,t}j∈V \i)
= argmax

ai∈Rm

Eσ0:t−1 [ui(ai, {σj,t(hj,t)}j∈V \i,θ)|hi,t] (4)

Note that here we consider myopic best responses, that is, agents
do not consider the effect of their current actions on future
payoffs.

So far we have not determined the strategies that agents use.
A reasonable restriction for agents’ strategies is that they are
best responses to the strategies of other agents. This gives rise
to our notion of equilibrium. A strategy profile σ∗ is a BNE if
it satisfies

σ∗i,t(hi,t) = BRi,t({σ∗j,t(hj,t)}j∈V \i) for all i ∈ V, t ∈ N.
(5)

BNE strategy is such that there is no other strategy that agent
i could unilaterally deviate to that will provide a higher payoff
at any point in time. Our equilibrium notion is based on the
premise that agents are choosing actions that are myopically
optimal given their information.

Note that if all agents have complete knowledge, that is, if
they know the private signals of all agents x, then the set of
equilibrium strategies would be fixed at each stage. On the other
hand, when agents have incomplete information, they need to
estimate the private signals of others at each stage based on the
new observed actions. Since they are refining their estimates by
accumulating information over time, the equilibrium strategies
are not necessarily time invariant.

For the utility function in (3), we obtain the best response
function for agent i by taking the derivative of the expected utility
function with respect to ai, equating it to zero, and solving for ai.
As a result, the BNE equilibrium strategy defined by equations
in (5) for the quadratic utility function in (3) is the solution to
the following fixed point equation

σ∗i,t(hi,t) =
∑
j∈V \i

BijEi,t[σ
∗
j,t(hj,t)] +DEi,t[θ] (6)

for all i ∈ V and t ∈ N where Ei,t[·] := Eσ∗
0:t−1

[·
∣∣hi,t].

Similarly, Pi,t(·) := Pσ∗
0:t−1

[·
∣∣hi,t]. In this paper, we assume

that agents play according to the BNE strategy (6). In the
following sections, we develop the method to calculate the
equilibrium strategies at each step locally.

III. EQUILIBRIUM COMPUTATION
According to the model in Section II, at each stage agents

use the observed history to estimate the unknown parameter
as well as the histories of other agents. They use the common
knowledge BNE strategy and their estimates on histories of other
agents to form beliefs on actions of agents Pi,t({aj(t)}j∈V \i).
For an outside observer who knows the private signals x, the
network structure and BNE strategy, the trajectory of the game
is deterministically known. Thus it is sufficient for agents to
keep track of their estimates of x in order to form beliefs on the
histories and actions of other agents. In this section, we provide
a method for an outside observer to track the trajectory of the
game given x.

Given agent i’s estimate of all the private signals at time t,
Ei,t [x], we define the corresponding error covariance matrix
for agent i, M i

xx(t) ∈ RNm×Nm, as M i
xx(t) := Ei,t[(x −

Ei,t [x])(x − Ei,t [x])T ]. Further, we denote agent i’s estimate
of θ at time t as Ei,t [θ], and the corresponding error variance
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value, M i
θθ(t) ∈ Rm×m, as M i

θθ(t) := Ei,t[(θ − Ei,t [θ])(θ −
Ei,t [θ])T ]. Agent i’s estimate of θ is based on her estimate
of the private signals; therefore, agent i also needs to keep
track of the error covariance between her estimate of θ and
her estimate of x, M i

θx(t) ∈ Rm×Nm, defined as M i
θx(t) :=

Ei,t[(θ −Ei,t [θ])(x−Ei,t [x])T ].
At node i, based on signal model (1), the initial estimates of

θ and x are Gaussian with means that are expressed as linear
combinations of xi. Hence, the initial expected mean at i can be
expressed as a linear combination of all the private signals by
sparse estimation matrices

Ei,0 [θ] = Qi,0x, and Ei,0 [x] = Li,0x. (7)

where Qi,0 ∈ Rm×Nm and Li,0 ∈ RNm×Nm. Both of these
estimation matrices have zeros except in the ith m column block.
Initial error variance-covariance matrices can also be defined
accordingly.

Our goal is to characterize Bayesian update of estimates and
calculation of equilibrium actions. We start by assuming that at
time t agents’ estimates of θ and x are normally distributed with
means

Ei,t [θ] = Qi,tx, and Ei,t[x] = Li,tx, (8)

where Qi,t ∈ Rm×Nm and Li,t ∈ RNm×Nm are known
estimation weights.

We further assume that there exists an equilibrium strategy
that is linear in expectations of private signals,

σ∗i,t(hi,t) = Ui,tEi,t[x] for all i ∈ V, (9)

for action coefficients Ui,t ∈ Rm×Nm. By substituting the
candidate strategies in (9) to the BNE condition in (6) for all
i ∈ V , we obtain the following equations

Ui,tEi,t[x] =
∑
j∈V \i

BijEi,t[Uj,tEj,t[x]] +DEi,t[θ]. (10)

for all i ∈ V . After using the fact that Ei,t[Ej,t[x]] = Lj,tEi,t[x]
with mean estimate assumptions in (8) for the corresponding
terms in (10) and ensuring that the strategies in (9) satisfy the
equilibrium equations for any realization of history by equating
coefficients that multiply each component of x, we obtain the
set of equations given by

LTi,tU
T
i,t =

∑
j∈V \i

LTi,tL
T
j,tU

T
j,tB

T
ij +QTi,tD

T for all i ∈ V (11)

which we can solve to get the action coefficients {Ui,t}i∈V . The
existence of a linear equilibrium strategy means that the set of
linear equations in (11) has at least one solution. In Section III-A,
we provide conditions for existence and uniqueness of a solution.

For a linear equilibrium strategy, the actions can be written as
a linear combination of the private signals using (8), that is, the
action of agent i at time t is given by

ai(t) = Ui,tLi,tx for all i ∈ V. (12)

Being able to express actions as in (12) permits writing obser-
vations of agents in linear form. From the perspective of an
observer, the action aj(t) is equivalent to observing a linear

combination of private signals. As a result, we can represent ob-
servation vector of agent i, an(i)(t) :=

[
aj1(t), . . . ,ajd(i)(t)

]T ∈
Rmd(i) in linear form as

an(i)(t) = HT
i,tx = [Uj1,tLj1,t; . . . ;Ujd(i),tLjd(i),t]x (13)

where HT
i,t = [Uj1,tLj1,t; . . . ;Ujd(i),tLjd(i),t] ∈ Rmd(i)×Nm is

the observation matrix of agent i. Agent i’s belief of x at time t
is Gaussian by assumption, and at time t+ 1 agent i observes a
linear combination of x. Hence, agent i’s belief at time t+1 can
be obtained by a sequential LMMSE update. As a result, mean
estimates remain weighted sums of private signals as in (8). In
the following lemma, we explicitly present the way we compute
the estimation weights, Li,t+1 and Qi,t+1, at time t+ 1.

Lemma 1 Consider a Bayesian game with quadratic function as
in (3) with the belief and BNE strategy assumptions as above.
Further define the gain matrices as

Ki
x(t) := M i

xx(t)Hi,t

(
HT
i,tM

i
xx(t)Hi,t

)−1
, (14)

Ki
θ(t) := M i

θx(t)Hi,t

(
HT
i,tM

i
xx(t)Hi,t

)−1
. (15)

If agents play according to a linear equilibrium strategy then
agent i’s posterior Pi,t+1([θT ,xT ]) is Gaussian with means that
are linear combination of private signals,

Ei,t+1 [θ] = Qi,t+1x, and Ei,t+1[x] = Li,t+1x, (16)

where the estimation matrices are given by

Li,t+1 = Li,t +Ki
x(t)

(
HT
i,t −HT

i,tLi,t
)
, (17)

Qi,t+1 = Qi,t +Ki
θ(t)

(
HT
i,t −HT

i,t, Li,t
)
, (18)

and the covariance matrices are further given by

M i
xx(t+ 1) =M i

xx(t)−Ki
x(t)HT

i,tM
i
xx(t), (19)

M i
θθ(t+ 1) =M i

θθ(t)−
[
Ki

θ(t)THT
i,tM

i
xθ(t)

]T
, (20)

M i
θx(t+ 1) =M i

θx(t)−Ki
θ(t)HT

i,tM
i
xx(t). (21)

Proof sketch1: Since observations of i, an(i)(t), are linear
combinations of private signals x which are Gaussian, observa-
tions of i are also normally distributed from the perspective of i.
Furthermore, by assumption in (8), the prior distribution Pi,t(x)
is Gaussian. Hence, the posterior distribution is also Gaussian.
Specifically, the mean of the posterior distribution corresponds
to the LMMSE estimator with gain matrix in (14); that is,

Ei,t+1[x] =Ei,t [x] +Ki
x(t)

(
an(i)(t)−Ei,t[an(i)(t)]

)
. (22)

Because θ and x are jointly Gaussian at time t, θ and an(i)(t)
are also jointly Gaussian. Consequently, the estimate of θ is given
by a sequential LMMSE estimator with gain matrix in (15),

Ei,t+1 [θ] =Ei,t [θ] +Ki
θ(t)

(
an(i)(t)−Ei,t

[
an(i)(t)

])
. (23)

Substituting mean estimate assumptions at time t (8) and obser-
vation matrix (13) inside (22) and (23) and by grouping terms
that multiply x, we obtain the estimation weights recursion in
(17) and (18). Similarly, the updates for error covariance matrices

1Proofs of results in this paper are available in [8].
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are as given in (19)–(21) following standard LMMSE updates.

Lemma 1 shows that when mean estimates are linear combina-
tions of private signals at time t, they remain that way at time
t + 1. In the next theorem, we show that assumption in (8) is
indeed true for all time by realizing that the estimates at time
t = 0 are linear combinations of private signals.

Theorem 1 Given the quadratic utility function in (3), if there
exists a linear equilibrium strategy σ∗t as in (9) for t ∈ N, then
the action coefficients Ui,t can be computed by solving the system
of linear equations in (11), and further, agents’ estimates of x
and θ are linear combinations of private signals as in (8) with
estimation matrices computed recursively using (14)-(15) and
(17)-(21) with initial mean values (7).

Theorem 1 shows that an external observer can compute
the equilibrium actions explicitly when the strategy profile and
network structure is known, and there exists a linear equilibrium
strategy at each time. Next we provide conditions for the
uniqueness and existence of linear equilibrium strategies at all
times. Then in the following section we present a local algorithm
for individual agents to propagate their beliefs and compute
equilibrium strategies.

III-A. Existence and uniqueness of linear equilibrium strat-
egy

The existence and uniqueness of linear equilibrium strategy
for Bayesian quadratic games have been studied in economics
literature [9], [10] for single stage games. By using these existing
results with Theorem 1, we show that under certain conditions
on utility function (3), there exists a unique linear equilibrium
strategy at all times.

Proposition 1 Given the utility function in (3), define the matrix
B ∈ RNm×Nm with m×m diagonal blocks where i, jth m×m
block B[i, j] := [−Bij ] for i ∈ V , j ∈ V \i and B[i, i] = I . If B
is a symmetric positive definite matrix then there exists a unique
equilibrium action linear in expectations of private signals at
each stage t ∈ N.

Proof Sketch: First, we define the following value function,

v(a,θ) =−1

2

∑
i∈V

aTi ai+
1

2

∑
i∈V

∑
j∈V \i

aTi Bijaj+
∑
i∈V

aTi Dθ

= −1

2
aTBa + aT (1⊗D)θ (24)

where 1 ∈ RN×1 is a vector of ones and a = [aT1 , . . . ,a
T
N ]T .

Note that ∂Ei,t[ui(a,θ)]/∂ai = ∂Ei,t[v(a,θ)]/∂ai for all i ∈ V
and hi,t where ui(·) is as in (3). In other words, v(·) is a Bayesian
potential function for the game {ui(·)}i∈V . Furthermore, the
BNE of the Bayesian potential function in (24) correspond to
the BNE of the game with utility functions given by {ui(·)}i∈V ,
see Lemma 5 in [10].

Theorem 5 in [9] states that if individual signals are jointly
Gaussian as in (1) and B is positive definite, for the ‘team’
payoff function in (24) the unique equilibrium is linear in self

Algorithm 1: QNG filter for θ ∈ Rm

1 Initialization: Set posterior distribution on θ and x[
θ
x

] ∣∣hi,0 ∼ N ([Qi,0xLi,0x

]
,

(
M i

θθ(0),M i
θx(0)

M i
xθ(0),M i

xx(0)

))
and {Lj,0, Qj,0}j∈V according to signal model (1).

2 For t = 0, 1, 2, . . .
1) Equilibrium strategy: Solve for {Uj,t}j∈V using the set

of equations in (11).
2) Play and observe: Take action ai(t) = Ui,tEi,t[x] and

observe an(i)(t).
3) Observation matrix: Construct Hi,t using (13).
4) Bayesian estimates: Calculate Ei,t+1[x] and Ei,t+1[θ]

using (22) and (23), respectively. Update error covariance
matrices using (19)–(21).

5) Estimation weights: Construct {Hj,t}j∈V using (13) and
update {Lj,t+1, Qj,t+1}j∈V using (17)–(18).

private signals. Hence, the game in (3) has a unique equilibrium
strategy linear in self private signal at time t = 0. As a result,
agents’ observations at time t = 1, that is, an(i)(0), are also
Gaussian random variables by Theorem 1. Consequently, the
signals observed by agents {hj,1}j∈V are jointly Gaussian. Again
by Theorem 5 in [9], the equilibrium strategy at time t = 1
is a linear combination of observed signals. Furthermore, there
exists some weighting matrix Φi,1 ∈ R(d(i)+1)m×Nm such that
hi,1 = Φi,tEi,t[x] for i ∈ V . Henceforth the equilibrium action
can be written as a linear combination of expectations of private
signals as in (9). The induction argument can be completed by
assuming the actions up to time t, {a∗i (s) : i ∈ V, s < t} are of
the form in (9) and following the same reasoning.

IV. QUADRATIC NETWORK GAME FILTER
In the QNG filter summarized in Algorithm 1, we provide a

sequential local algorithm for agent i to calculate updates for
θ and x and to act according to equilibrium strategy. In the
calculation of action and estimation coefficients in QNG filter, we
make use of the assumptions that signal and network structure,
and the strategy profile are common knowledge.

The QNG filter entails a full network simulation in which
agent i maintains individual beliefs while keeping track of com-
putations of all the agents in the network. Initially, agent i knows
estimation weights of all agents which are {Lj,0, Qj,0}j∈V given
common knowledge of the signal structure. Note that this does
not imply that agent i knows private signals of other agents.
Using the estimation weights at time t = 0, 1, 2, . . . agent i
constructs the system of equations in (11) and solves for indi-
vidual action coefficients {Uj,t}j∈V – see Step 1 in QNG filter.
Note that the solution for the action coefficients in (11) does not
depend on the realization of private signals. In step 2, agent i
multiples her private signal estimate Ei,t[x] by the vector Ui,t to
determine self equilibrium play. Unlike the action coefficients,
the actions realized depend on the observed history, and hence
on the realization of the private signals. Next agent i observes

4
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Fig. 1. Geometric network with N = 50 agents (a): Agents are randomly placed on a 5 × 5 square. There exists an edge between
any pair of agents with distance less than 1.5 meter apart in the geometric network. Number of good 1 and 2 produced by each
agent are depicted in (b) and (c), respectively.

actions of neighboring agents and uses {Uj,t, Lj,t}j∈n(i) to form
the observation matrix Hi,t. She uses the observation matrix
to refine her estimates on x and θ according to a sequential
LMMSE update using (21) and (22) – see step 4. Note that
the estimation weights Li,t and Qi,t cannot be used to calculate
the mean estimates provided by Theorem 1, unless the private
signals x are exactly known. Finally in step 5, agent i constructs
observation matrices of all the agents via (13) and updates
estimation coefficients of all the agents {Lj,t, Qj,t}j∈V using
(17)–(18) which are necessary to compute equilibrium action
coefficients of the next step.

V. COURNOT COMPETITION GAME
Consider a competition model in which N firms compete on

the amount of goods they produce. There are m goods and each
firm’s decision of how much to produce of a certain good affects
the price of that good. Specifically, the selling unit price for
good n decreases linearly by the total amount produced p[n]−∑
j∈V aj [n] where p[n] is the constant market price when zero

good n is produced. Further, each unit of good n produced has
a fixed unit cost c[n] that is identical for all firms. The profit of
firm i for production levels a ∈ Rm is given by the utility

ui(ai, {aj}j∈V \i,θ) =
(
θ − ai −

∑
j∈V \i

aj

)T
ai (25)

where we define θ[n] := p[n]− c[n] as the effective unit profit
of good n. By rearranging terms one can see that this utility
function is of the same form in (3).

In this example, we consider m = 2 goods with effective unit
profits θ = [50, 100]T . Agent i makes private observations xi
on θ based on (1) with εi ∼ N (0, I). We evaluate convergence
behavior in geometric network with N = 50 agents; see Fig. 1
(a). The network has a diameter of d = 5. The action values
of each agent for good 1 and 2 are depicted in Fig. 1 (b)-(c),
respectively. The results show that agents’ actions converge to
the Nash equilibrium with complete information at time t = 5,
that is, nth action of i at time t = 5 is

ai(5)[n] =
E
[
θ[n]

∣∣x]
N + 1

i ∈ V, n = 1, 2. (26)

This implies that agents learn the sufficient statistic to calculate
the best estimates of effective unit profit for each good in the
amount of time it takes for an information to propagate through
the entire network.
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