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ABSTRACT

Synchronization and localization are critical challenges for

the coherent functioning of a wireless network of mobile

nodes. In this paper, a novel joint non-linear range and affine

time model is presented based on two way time stamp ex-

changes, extending an existing affine time-range model. For

a pair of nodes, a closed form pairwise least squares solution

is proposed for estimating pairwise range parameters, namely

relative range, range rate and rate of range rate between the

nodes, in addition to estimating the clock skews and the clock

offsets. Extending these pair wise solutions to network wide

ranging and clock synchronization, we present a central data

fusion based global least squares solution. Furthermore, a

new Constrained Cramer Rao Bound (CCRB) is derived for

the joint time-range model and the proposed algorithms are

shown to approach the theoretical limits asymptotically.

Index Terms— clock synchronization, localization, skew,

offset, wireless network, relative, velocity

1. INTRODUCTION

The coherent functioning of wireless networks relies heavily

on time synchronization among nodes [1]. All nodes in a net-

work are equipped with independent clock oscillators, which

must be synchronized to a global reference, to facilitate accu-

rate time stamping of data and synchronized communication

of processed information. Furthermore, when nodes are mo-

bile and/or arbitrarily deployed in the field, then position es-

timation is often equally critical as time synchronization [2].

The intermediate distances between all the nodes in the net-

work is one of the key inputs for almost all localization tech-

niques.

Among various potential applications, our key motivation

is the Orbiting Low Frequency Antennas for Radio astronomy

(OLFAR) [3], which aims to design and develop a detailed

system concept for an interferometric array (≥ 10) of identi-

cal, scalable and autonomous satellites in space to be used as

a scientific instrument for ultra low frequency observations.

Due to its distant deployment location, far from the earth or-

biting global positioning systems, and the large number of

This research was funded in part by the STW OLFAR project (Contract

Number: 10556) within the ASSYS perspectief program.

satellites, autonomous network synchronization and localiza-

tion is one of the key challenges in OLFAR.

For a fixed network of immobile nodes capable of two

way communication [4], various least squares solutions are

prevalent for clock synchronization, which model each node

clock as a first order polynomial and, subsequently estimate

clock skews and clock offsets [5]. As an extension, the Global

least Squares (GLS) estimator was presented in [6] to estimate

the clock parameters along the pairwise distances between

all the nodes in the network. A step further, for a network

with mobile nodes, an affine time-range model was proposed

in [7], which approximates the time varying pairwise distance

to the first order. Using this model, an Extended Global Least

Squares (EGLS) solution was presented to estimate the clock

skews, offsets and in addition the ranges and range rates of

the network. However, the Euclidean distance between pair

of mobile nodes is always non-linear. Hence, as an extension

of the affine time-range model, we propose a novel non-linear

range model in conjunction with an affine clock model. For

a pair of mobile nodes capable of two way communication,

we present (Extended)2 Pairwise Least Squares (E2PLS) so-

lution to estimate clock parameters upto first order and range

parameters upto the second order. In addition, a centralized

(Extended)2 Global Least Squares (E2GLS) is proposed for

estimating clock and range parameters across the network.

Notation: The element wise matrix Hadamard product is

denoted by ⊙, (·)⊙N denotes element-wise matrix exponent

and ⊘ indicates the element-wise Hadamard division. 1N =
[1, 1 . . . , 1]T ,0N = [0, 0 . . . , 0]T ∈ R

N×1, are vectors of

ones and zeros, respectively. (·)T is the transpose operator,

IN is a N ×N identity matrix, 0M,N is a M ×N matrix of 0,

diag(a) represents a diagonal matrix with elements of vector

a on the diagonal.

2. JOINT TIME RANGE MODEL

2.1. Time

Consider a network of N nodes equipped with independent

clock oscillators which, under ideal conditions, are synchro-

nized to the global time. However, in reality, due to vari-

ous oscillator imperfections and environment conditions the

clocks vary independently. Let ti be the local time at node i,

EUSIPCO 2013 1569747209
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then its divergence from the ideal true time t is to first order

given by the affine clock model [5–7],

ti = ωit+ φi ⇔ t = αiti + βi (1)

where ωi ∈ R+ and φi ∈ R are the clock skew and clock off-

set of node i. In actuality, the clock skew (ωi) and clock off-

set (φi) are time varying, but we assume they remain constant

during the estimation process, which is a reasonable assump-

tion [5] [8]. The clock skew and clock offset parameters for

all N nodes are represented by ω = [ω1, ω2, . . . , ωN ]T ∈
R

N×1
+ and φ = [φ1, φ2, . . . , φN ]T ∈ R

N×1 respectively.

Note that for an ideal clock, [ωi, φi] = [1, 0] subsequently

implies [αi, βi] = [1, 0] and vice versa. Following immedi-

ately, for all N nodes in the network, we have α,β ∈ R
N×1,

ω , 1N ⊘α φ , −β ⊘α (2)

2.2. Range

In addition to clock variations, the nodes are also in motion

with respect to each other. Traditionally, when the nodes are

fixed [2] [6], the pairwise propagation delay τij between a

node pair (i, j) is τij = c−1dij , where dij is the fixed dis-

tance between the node pair and c is the speed of the electro-

magnetic wave in the medium. When the nodes are mobile,

then the relative distances between the nodes are a non-linear

function of time. For a node pair (i, j) the propagation delay

τij(t) ≡ τji(t) is then, extending the affine range model [7],

modeled as a second order function in t given by

τij(t) = c−1dij(t) = c−1(r̈ijt
2 + ṙijt+ rij) (3)

where rij , ṙij , r̈ij ∈ R are the range, range rate and the rate

of range rate between the node pair (i, j) respectively. Sub-

stituting the equation of ideal true time t from (1), we have

the propagation delay τij(ti) in terms of the local time ti, for

a small duration of measurement time as

τij(ti) = γijt
2
i + δijti + ǫij (4)

where γij = c−1α2
i r̈ij , δij = c−1(2α−1

i βir̈ij + αiṙij) and

ǫij = c−1(β2
i r̈ij + βiṙij + rij) are the derived range param-

eters which incorporate the clock discrepancy of node i. If

node i is the reference node i.e., t = ti, then γij = r̈ij , δij =
ṙij , ǫij = rij as expected. For the entire network, all M =
(
N

2

)

unique pairwise ranges between N nodes are stacked

in the vector r = {rij , ∀ i, j = 1, 2, . . . , N ; i < j} ∈ R
M×1

and in similar lines the relative rate of range rates r̈ ∈ R
M×1

and the relative range rates ṙ ∈ R
M×1. The derived range

parameters γ, δ, ǫ ∈ R
M×1 are then, γ , c−1{α2

i r̈ij}, δ ,

c−1{2α−1
i βir̈ij + αiṙij} and ǫ , c−1{β2

i r̈ij + βiṙij + rij}
or alternatively, the range parameters are

r̈, c{α−2
i γij} ∈ R

M×1 (5a)

ṙ, c{α−1
i (δij − 2α−1

i βiγij)} ∈ R
M×1 (5b)

r, c{ǫij − α−1
i βiδij + (α−1

i βi)
2γij} ∈ R

M×1 (5c)

Fig. 1. Communication between a pair of mobile nodes where

the nodes transmit and receive, during which K time stamps are

recorded at respective nodes. Similar to [6, 7], the presented model

puts no pre-requisite on the sequence or number of two way commu-

nications.

The derived network parameters θ = [α,β,γ, δ, ǫ] ∈ R
L×1

where L = 2N + 3M , are uniquely related to the unknown

clock and range parameters η = [ω,φ, r̈, ṙ, r] ∈ R
L×1. In

this paper, we intend to estimate the derived network parame-

ters θ, given an arbitrary clock reference and communication

between nodes. With θ known, the unknown parameters η

containing the clock parameters (ω,φ) and relative range co-

efficients (r, ṙ, r̈) of the network nodes can be obtained via

(2) and (5). Consequently, using the range coefficients an ap-

proximate estimate of the distance over a period of time can

be obtained from (3).

3. JOINT NON-LINEAR RANGING AND AFFINE

SYNCHRONIZATION

Consider a pair of mobile nodes (i, j) such that {i, j} ≤ N

and i < j, which communicate messages back and forth, as

shown in Figure 1. The kth time stamp recorded at node i

when communicating with node j is denoted by Tij,k and

similarly at node j the time stamp is Tji,k. The direction of

the communication is indicated by Eij,k , where Eij,k = +1
for transmission from node i to node j and Eij,k = −1
for transmission from node j to node i. In all there are K

time stamps recorded at each node, during which the prop-

agation delay between the two nodes is governed by the

non-linear range model given by (4). Under ideal circum-

stances, when the nodes are completely synchronized, the

noise free kth communication time markers are related as

Tji,k = Tij,k + Eij,kτij(t) where Eij,k = −Eji,k = ±1
represents the direction information of the data packet. In re-

ality, due to measurement noise and clock uncertainties mod-

eled in (1) we have, αj(Tji,k + qj,k) + βj = αi(Tij,k +
qi,k) + βi + Eij,kτij(ti), where {qi,k, qj,k} ∼ N (0, 0.5σ2)
are Gaussian i.i.d. noise variables plaguing the timing mea-

surements at respective nodes. Rearranging the terms and in-

corporating the range model for τij(ti) from (4) as a func-

tion of local time at node i we have (6). Expanding the

equation and rearranging the terms we have (7) where, af-

ter ignoring the higher order noise terms, the noise qij,k =

2
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αjqj,k − (αi − Eij,k(2γijTij,k + δij))qi,k which is modeled

as qij,k ∼ N (0, 0.5σ2(α2
j + (αi + 2γijEij,kTij,k + δij)

2)).
Note that the clock skews ωi in reality are very close to 1 with

errors of the order of 10−4 [6]. Hence, α2
j ≈ 1 ∀ j ≤ N and

such an approximation is satisfactory and is implicitly em-

ployed in various literature [5, 6]. Secondly, for c = 3 × 108

m/s, we observe from (4) that 2γijEij,kTij,k + δij is negligi-

bly small and hence the Gaussian noise is approximated to

qij,k ∼ N (0, σ2) (8)

Extending (7) for all K communications, a generalized model

for a pair of nodes is

[
A1 A2

]













αi

αj

βi

βj

γij
δij
ǫij













= qij (9)

where A1 = [tij − tji 1K − 1K ] and A2 = eij ⊙
[t⊙2

ij tij 1K ] contain the observation vectors

tij = [Tij,1, Tij,2, . . . , Tij,K ]T ∈ R
K×1 (10)

eij = [Eij,1, Eij,2, . . . , Eij,K ]T ∈ R
K×1 (11)

The time markers recorded at node i and node j while com-

municating with each other are stored in tij and tji respec-

tively and eij is a known vector indicating the transmission

direction for each data packet. qij is the uncorrelated i.i.d.

noise vector given from (8) as

qij = [qij,1, qij,2, . . . , qij,K ]T ∈ R
K×1

∼N (0, σ2IK) (12)

A unique solution to the homogenous system (9) can be ob-

tained by asserting one of the two nodes as the reference

node, say node i with [αi, βi] = [1, 0]. This gives Ajiθj =
−tij + qij where Aji = [−tji − 1K eij ⊙ t⊙2

ij eij ⊙

tij eij ] ∈ R
K×5 and θij = [αj βj γij δij ǫij ]

T ∈
R

5×1. The (Extended)2 Pairwise Least Squares (E2PLS) so-

lution is obtained by minimizing the l2 norm,

θ̂ij = argmin
θij

‖Ajiθij + tij‖
2
2 = −(AT

jiAji)
−1AT

jitij

(13)

which, similar to [6] [7], has a unique solution provided the

number of communications K ≥ 5, eij 6= −1K and eij 6=
+1K . The unknown parameters [ωj , φj , r̈ij , ṙij , rij ] can be

derived from the estimate θ̂ij = [α̂j , β̂j , γ̂ij , δ̂ij , ǫ̂ij ] using

(2) and (5). Aggregating (9), for all pairwise links in the

network, we have a linear global model of the form

A
︷ ︸︸ ︷

[T1 E1 E2 ⊙T⊙2
2 E2 ⊙T2 E2]

θ
︷ ︸︸ ︷








α

β

γ

δ

ǫ









= q (14)

where the matrices T1,T2 ∈ R
M1×N contain timing vectors

recorded at all N nodes, E1 ∈ R
M1×N is a matrix of ± 1K

and 0K , E2 ∈ R
M1×M , where M1 = KM and the noise

vector is represented as q =
[

qT
12,q

T
13, . . . ,q

T
(N−1)(N)

]T

∈

R
M1×1 where each qij is given by (12). We assume that the

noise vectors for each pairwise communication qij are uncor-

related with one another, which may not be applicable for all

communication schemes e.g., broadcasting. For N = 4, T1,

E1, T2, E2 are of the form

T1 =











t12 −t21
t13 −t31
t14 −t41

t23 −t32
t24 −t42

t34 −t43











E1 =











+1K −1K

+1K −1K

+1K −1K

+1K −1K

+1K −1K

+1K −1K











T2 = diag(t12, t13, t14, t23, t24, t34)
E2 = diag(e12, e13, e14, e23, e24, e34) (15)

where the missing elements indicate 0. This structure can be

extended for N ≥ 4. More generally, the unknown vector θ ∈
R

L×1, where L = 2N+3M , can be estimated by minimizing

the cost function

min
θ

‖Aθ ‖2 s.t. Cθ = d (16)

where A is the (rank-deficient) matrix defined in (9) and

C ∈ R
M2×L, is a known constraint matrix and d ∈ R

M2×1.

Assuming the constraints are selected such that

[
A

C

]

∈

R
(M1+M2)×L is non singular and d 6= 0P , the solution to

αiTij,k − αjTji,k + βi − βj + Eij,k(γij(Tij,k + qi,k)
2 + δij(Tij,k + qi,k) + ǫij) = αjqj,k − αiqi,k (6)

αiTij,k − αjTji,k + βi − βj
︸ ︷︷ ︸

Clock parameters + Measurements

+ Eij,k
︸ ︷︷ ︸

Direction

(γij(Tij,k)
2 + δijTij,k + ǫij)

︸ ︷︷ ︸

Range parameters + Measurements

= qij,k
︸︷︷︸

noise

(7)

3
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(16) is obtained by solving the Karush-Kuhn-Tucker equa-

tions [9] and is given by

[
θ̂

λ̂

]

=

[
2ATA CT

C 0M2,M2

]−1 [
0L

d

]

(17)

where λ ∈ R
M2×1 is the Lagrange vector. If a random node,

say node i is assumed to be the clock reference then the con-

straint matrix is of the form

C =

[
cTi 0T

N 0T
M 0T

M 0T
M

0T
N cTi 0T

M 0T
M 0T

M

]

, d =

[
1
0

]

(18)

where ci =
[
0T
i−1, 1, 0

T
N−i

]T
∈ R

N×1. Similar to [6] [7],

despite missing links, network wide synchronization is still

feasible using the proposed algorithms provided the network

consists of at least N − 1 links, where every node has at least

a single two way communication link with one other node in

the network.

4. CONSTRAINED CRAMER RAO LOWER BOUND

In order to verify the performance of the proposed algorithm,

we derive a Constrained Cramer Rao lower Bound (CCRB)

for the model in (14), where Gaussian noise is assumed on

the time markers . The CCRB on the error variance for an

unbiased estimator is given by [10]

ε

{

(θ̂ − θ)(θ̂ − θ)T
}

≥ Σθ = U(UTFU)−1UT (19)

where Σθ is the lower bound on θ, U ∈ R
L×(L−M2) with

L = 2N + 3M is an orthonormal basis for the null space

of the constraint matrix C with M2 constraints, and F =
σ−2ATA ∈ R

L×L is the Fisher Information Matrix. Since

the system parameters η = [ω, φ, r̈, ṙ, r] can be uniquely

derived from θ, we have the CRB on the estimates of η from

standard error propagation formulas, Ση = Jθη Σθ JT
θη

where Σθ is given by (19) and Jθη ∈ R
L×L is the Jacobian of

the transformation of η from θ, which is given by (21), where

A = diag(α)−1 ∈ R
N×N ,B = diag(β) ∈ R

N×N , Ã =
diag(α̃)−1 ∈ R

M×N and B̃ = diag(β̃) ∈ R
M×N . Further-

more for N = 4, G ∈ R
M×N ,D ∈ R

M×N are of the form

G =







γ12 γ13 γ14
γ23 γ24

γ34
0T
M







D=







δ12 δ13 δ14
δ23 δ24

δ34
0T
M







(20)

which can be extended for N ≥ 4 in a straightforward way.

5 10 15 20

10
−10

10
−9

10
−8

10
−7

 

 

E
2
PLS estimate (Proposed)

E
2
GLS estimate (Proposed)

RCRB

Number of two way communications (K)

R
M

S
E

o
f

cl
o
ck

p
ar

am
et

er
s

(ω̂
,
φ̂

) Clock skews (ω)

Clock offsets (φ)

5 10 15 20
10

−2

10
−1

10
0

10
1

10
2

 

 

E
2
GLS estimate (Proposed)

RCRB

Number of two way communications (K)

R
M

S
E

o
f

ra
n
g
e

p
ar

am
et

er
s

(ˆ̈ r
,
ˆ̇ r

,
r̂

)

Rate of range rates (̈r)

Range rates (ṙ)
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Fig. 2. Root Mean Square Error (RMSE) and RCRB plots of (a)

estimated clock parameters [ω̂, φ̂] and (b) range parameters [ˆ̈r, ˆ̇r, r̂]
for a network of N = 4 nodes, where the noise is Gaussian with

σ = 0.01µs

(a)

(b)

5. SIMULATIONS

We consider a network of 4 nodes, each capable of two way

communication with each other. The clock skews (ω) and

clock offsets (φ) and of the nodes are uniform randomly dis-

tributed in the range [1− 10ppm, 1+10ppm] and [−10,+10]
seconds respectively. The range parameters (r̈, ṙ, r) of the

nodes are uniformly distributed in the range [−0.1,+0.1]
m/s2 , [−1,+1] m/s and (0, 10] Km respectively, which is ac-

ceptable for satellites in (selective) orbits around the moon

[11], for short intervals of time. The transmission time mark-

ers tij are linearly distributed between 0.1 to 10 seconds, for

a number of two way communication links K spanning from

5 to 20, wherein the nodes transmit and receive time stamps

alternatingly [6]. The metric used to evaluate the performance

4
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of the estimators is the Root Mean Square Error (RMSE) and

without loss of generality, node 1 is considered to be the refer-

ence node with [α1 β1] = [1, 0] and the Gaussian noise on the

time markers has a standard deviation σ = 0.01µs. Further-

more, along with the RMSE plots, the Root mean square of

the Constrained Cramer Rao Bound (RCRB) derived in Sec-

tion 4 are also plotted. The E2PLS algorithm is independently

applied, pairwise from node 1 to every other node to estimate

all the unknown clock parameters (ω,φ) and for the entire

network, the E2GLS algorithm is applied. Figure 2(a) shows

the RMSE plots vs the number of communications K for the

clock skew (ω) and the clock offset (φ). The E2GLS es-

timate outperforms the E2PLS estimate for clock parameter

estimation, which is expected, since the total number of com-

munication links available for the E2GLS estimate is greater

than that for E2PLS i.e., M > (N−1) forN ≥ 2. The RMSE

of the relative range parameters [̈r, ṙ, r] are plotted in Figure

2(b) and all the estimates, perhaps not surprisingly, achieve

the RCRB derived in (19) asymptotically.

6. CONCLUSIONS

For a cluster of model nodes, the pairwise distances between

the nodes are always non-linear and hence a second order

range model in conjunction with an affine clock model is pro-

posed. The E2PLS and E2GLS algorithms are least squares

solutions for jointly estimating the clock (ω,φ) and range pa-

rameters ([̈r, ṙ, r]), for a pair of nodes and the entire network

respectively. Given these parameters, the nodes can be syn-

chronized to the chosen reference clock and the time varying

pairwise distance can be reconstructed at each time instant.

A new Constrained Cramer Rao Bound (CCRB) is derived

and the proposed estimators approach the theoretical limits

asymptotically. The proposed joint time range basis is suited

for autonomous mobile wireless networks with minimal a pri-

ori knowledge, when clock parameters and pairwise distances

have to be estimated at cold start. More generally, over longer

durations the presented data model can be readily used for

tracking the unknown coefficients (of the mobile nodes) us-

ing a Kalman filter.
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