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ABSTRACT

Most existing analysis dictionary learning (ADL) algorithms,
such as the Analysis K-SVD, assume that the original signals
are known or can be correctly estimated. Usually the signals
are unknown and need to be estimated from its noisy version-
s with some computational efforts. When the noise level is
high, estimation of the signals becomes unreliable. In this pa-
per, a simple but effective ADL algorithm is proposed, where
we directly employ the observed data to compute the approx-
imate analysis sparse representation of the original signals.
This eliminates the need for estimating the original signals as
otherwise required in the Analysis K-SVD. The analysis s-
parse representation can be exploited to assign the observed
data into multiple subsets, which are then used for updating
the analysis dictionary. Experiments on synthetic data and
natural image denoising demonstrate its advantage over the
baseline algorithm, Analysis K-SVD.

Index Terms— Analysis sparse representation; dictio-
nary learning; cosparse model; image denoising

1. INTRODUCTION

Modeling signals as sparse linear combinations of a few atom-
s selected from a learned dictionary has been the focus of
much recent research in many signal processing fields such as
image denoising, audio processing, compression, and more.
A popular model for sparse representation is the synthesis
model. Consider a signal x ∈ RM , the synthesis sparse
representations of x over a dictionary D can be described as
x = Da, where D ∈ RM×N is a possibly overcomplete dic-
tionary (N ≥ M ), and a ∈ RN , containing the coding coef-
ficients, is assumed to be sparse, i.e., ∥a∥0 = k ≪ N . The
model assumes that the signal x ∈ RM can be described as a
linear combination of only a few columns (i.e., signal atom-
s) from the dictionary D. Thus, the performance of the model
hinges on the representation of the signals with an appropriate
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dictionary. In the past decade, a great deal of effort has been
dedicated to learning the dictionary D from signal examples
[1, 2, 3].

Recently, an alternative sparse model called analysis s-
parse model was proposed in [4, 5, 6, 7]. In this model, an
overcomplete analysis dictionary or analysis operator Ω ∈
RP×M (P ≥ M ) is sought to transform the signal vector
x ∈ RN to a high dimensional space, i.e., Ωx = z, where
the analysis coefficient vector z ∈ RP is called the analysis
representation of x and assumed to be sparse. In this mod-
el, the signal x is characterized by the location of the zero
entries of z. In other words, the rows of Ω that are associ-
ated with zero entries in z define a subspace that the signal
x belongs to, as opposed to the few non-zero entries of a in
the synthesis model. The dictionary Ω is often learned from
the observed signals Y = [y1 y2 ... yK ] ∈ RM×K measured
in the presence of additive noise, i.e., Y = X + V, where
X = [x1 x2 ... xK ] ∈ RM×K contains the original signals,
V = [v1 v2 ... vK ] ∈ RM×K is the noise and K is the num-
ber of signals. Compared to the extensive study for synthesis
dictionary learning, however, the analysis dictionary learning
problem has received much less attention with only a few al-
gorithms proposed recently [5, 7, 8].

In [5], an ℓ1-norm penalty function is applied to the repre-
sentation Ωxi, and a projected subgradients algorithm is pro-
posed for analysis operator learning. This work employs a
uniformly normalized tight frame as a constraint on the dictio-
nary to avoid the trivial solution. However, the method adds
a rather arbitrary constraint for the learning problem, and this
constraint limits the possible Ω to be learned. Exploiting the
fact that a row of the analysis dictionary Ω is orthogonal to
a sub-set of training signals X, a sequential minimal eigen-
value based ADL algorithm was proposed in [8]. Once the
sub-set is found, the corresponding row of the dictionary can
be updated with the eigenvector associated with the small-
est eigenvalue of the autocorrelation matrix of these signals.
However, as the number of the rows in Ω increases, so does
the computational cost of the method. In [7], the Analysis K-
SVD algorithm is proposed for analysis dictionary learning.
By keeping Ω fixed, the optimal backward greedy algorithm
was employed to estimate a sub-matrix of Ω whose rows are
orthogonal to X̂, i.e., the estimate of X from Y. A data set,
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i.e., the sub-matrix of Y, can be obtained, with its columns
corresponding to that of X̂. The smallest singular values of
this sub-matrix are then used to update Ω. The algorithm is
effective, but it needs to pre-estimate the signal x in order to
learn the dictionary.

The ADL algorithms mentioned above, all assume that
the signals X are known or can be accurately estimated from
its noisy version Y. However, in practice, the signals X are
unknown or need to be estimated from Y with some compu-
tational efforts. When the noise level is high, estimate of X
becomes unreliable. In this paper, using the cosparsity of x
(with respect to Ω), we propose a simple but effective ADL
algorithm. In this algorithm, we directly use the observed
data Y for learning the dictionary, i.e., without having to pre-
estimate X (as done in [7]). Simulation results show that the
denosing performance of our algorithm is better than that of
the Analysis K-SVD, especially when the noise level in the
observed signals increases. In addition, the proposed algo-
rithm is much faster than the Analysis K-SVD algorithm.

The paper is organized as follows. In Section 2, we dis-
cuss the cosparse analysis model and briefly describe the
Analysis K-SVD algorithm. In Section 3, we describe the
proposed Subset Pursuit Analysis Dictionary Learning algo-
rithm (SP-ADL). In Section 4, we show some experimental
results, before concluding the paper in Section 5.

2. THE COSPARSE ANALYSIS MODEL

The cosparse analysis model can be described as follows: for
a signal x ∈ RM and a fixed redundant analysis dictionary
Ω ∈ RP×M (P > M ), the cosparsity l of the cosparse analy-
sis model is

l = P − ∥Ωx∥0 (1)

where the ℓ0 quasi-norm ∥·∥0 counts the number of nonzero
components in its argument. The quantity l denotes the num-
ber of zeros in the vector Ωx, which implies that l rows in
Ω are orthogonal to the signal x, and these rows define the
cosupport Λ, i.e., ΩΛx = 0, where ΩΛ is a sub-matrix of Ω
that contains the rows from Ω indexed by Λ. In this case the
signal x is said to be l-cosparse and characterized by its co-
support Λ. It is clear that the dimension of the subspace that
signal x resides in is r = M − l. One can observe that the
larger the l, the more cosparse the x.

In the analysis model, if the true cosupport Λ is known,
the signal x can be recovered from its noisy version y = x+v
by [7]

x̂ =
(
I−Ω†

ΛΩΛ

)
y (2)

However, in general the dictionary Ω and the cosupport Λ are
unknown. To find Ω and Λ, the Analysis K-SVD algorithm
in [7] assumes that every example of the observation set Y
is a noisy version of the signal residing in an r-dimensional
subspace and all examples have the same co-rank of M − r

related to the dictionary Ω, and then the optimization task can
be described as follows:(

Ω̂, X̂,
(
Λ̂i

)K

i=1

)
= argmin

Ω,X,(Λi)
K
i=1

∥X−Y∥2F s.t.

ΩΛixi = 0, 1 ≤ ∀i ≤ K
Rank(ΩΛi) = M − r, 1 ≤ ∀i ≤ K∥∥wT

j

∥∥
2
= 1, 1 ≤ ∀j ≤ P

(3)

where xi is the i-th column of X, Λi is the cosupport of xi,
and wT

j denotes the rows of Ω. In [7] a two-phase block-
coordinate-relaxation approach is used for the optimization
task. In the first phase, by keeping Ω fixed, the backward
greedy algorithm is employed to find the cosupport Λ by se-
lecting the rows from Ω one-by-one, and then the estimation
of X is obtained. In the second phase, the estimation X̂ is
assigned into sub-matrix X̂j ⊆ X̂ whose columns are or-
thogonal to wj , and then a corresponding sub-matrix of Y,
i.e., Yj ⊆ Y, is built and the singular vector corresponding
to the smallest singular value of Yj is used to update the wj .
However, in the algorithm, the original signals X need to be
estimated first before the dictionary can be updated. Due to
use of greedy-like algorithms, estimation of X is computa-
tionally slow and also becomes unreliable with the increase
of noise in Y.

3. PROPOSED SUBSET PURSUIT ALGORITHM

In this section we present a subset pursuit algorithm for anal-
ysis dictionary learning, by directly using the observed data
for learning the analysis dictionary, without having to pre-
estimate X (as done in [7]). More specifically, we exploit the
analysis representation of Y to obtain the subset Yj , rather
than using X̂j to determine Yj . As a result, the proposed al-
gorithm is much faster than the Analysis K-SVD algorithm,
as shown in the simulation section. In addition, the proposed
algorithm offers better performance for image denoising than
the Analysis K-SVD algorithm. In our method, we also as-
sume that X has the same co-rank M − r related to the dictio-
nary Ω as in Analysis K-SVD.

3.1. The proposed ADL model

Suppose we measure a signal of the form

yi = xi + vi i = 1, 2, ...,K (4)

where vi is the noise vector with a bounded ℓ2 norm, say
∥vi∥2 ≤ σ, where σ denotes the noise level. According to
(1), the task of ADL can be formed as

min ∥Ωxi∥0 (5)

To solve this problem is NP-complete [9]. Just like in the
synthesis case, one might replace the ℓ0 quasi-norm with the
ℓ1 norm

min ∥Ωxi∥1 (6)
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where ∥·∥1 is the ℓ1 norm that sums the absolute values of a
vector. In general, when the noise vi is stationary and bound-
ed, the cosparse model (6) has an approximate cosparse model

min ∥Ωyi∥1 (7)

This is the model that we consider in our work, as opposed to
the model used in the work of [7].

3.2. Subset pursuit algorithm

Using (7), the analysis cosparse model is therefore written as

zi = Ωyi (8)

where zi = [z1i z2i · · · zPi]
T ∈ RP×1 is the analysis rep-

resentation of yi. Considering a single row wT
j in the analysis

dictionary Ω, (8) can be rewritten as

zji = wT
j yi (9)

Then the absolute values of zji is

|zji| =
∣∣wT

j yi

∣∣ = ∣∣wT
j xi +wT

j vi

∣∣ (10)

We know that
∣∣wT

j xi +wT
j vi

∣∣ ≤ ∣∣wT
j xi

∣∣+∣∣wT
j vi

∣∣. Thus, in
general the absolute values of zji has a small value when wj

is orthogonal to the signal xi, i.e., wT
j xi = 0. Thus, we can

compute the analysis sparse representation of the observed
data yi to find whether wT

j is orthogonal with the signal xi,
rather than using x̂i which otherwise has to be estimated from
Y.

Because the co-rank is assumed to be M − r, which im-
plies that M − r rows in Ω may be orthogonal to the data yi,
we can regard M − r smallest values in Ωyi as zeros. The
Λi := {j |

∣∣wT
j yi

∣∣ ≈ 0}, which is the co-support of yi, can
be obtained by the locations of the zero entries in Ωyi. We
can then assign yi into the sub-set Yj , ∀j ∈ Λi. After the Yj

is found, the wj is updated as follow [7]:

ŵj = argmin
wj

∥∥wT
j Yj

∥∥2
2

s.t. ∥wj∥2 = 1 (11)

For the optimization problem, the wj can be updated using
the eigenvector associated with the smallest eigenvalue of
YjY

T
j . This algorithm is described in the Algorithm table.

4. COMPUTER SIMULATION

To validate the proposed algorithm, we present results of two
experiments. In the first experiment we show the performance
of the proposed algorithm for synthetic dictionary recovery
problems. The second experiment considers the natural im-
ages denoising problem. In these experiments, Ω0 ∈ RP×M

is randomly generated and the each row of the Ω0 is normal-
ized.

Algorithm: SP-ADL

Input: Observed data Y ∈ RM×K , the initial dictionary
Ω0 ∈ RP×M , the co-rank M − r and the number of itera-
tions T
Output: Dictionary Ω
Initialization: Set Ω := Ω0, Let Y′ be the column-
normalised version of Y, where Y′ = [y′

1...y
′
K ] ∈

RM×K

For t = 1...T do
For i = 1...K do

• Compute zi = Ωy′
i, select M − r numbers of |zji|

which have the smallest values and find the cosup-
port Λi

• Assign corresponding yi into Yj , ∀j ∈ Λi

End for
For j = 1...P do

Update wj :
ŵj = argmin

wj

∥∥wT
j Yj

∥∥2
2

s.t. ∥wj∥2 = 1

End for
End for

4.1. Experiments on synthetic data

In the experiment of this subsection we use the proposed
method to recover a dictionary that was used to produce the
set of training data. We used the same experimental proto-
col as in [7]. In [7] the analysis dictionary Ω ∈ R50×25

was generated with random Gaussian entries, and the data
set consists of K = 50000 analysis signals each resid-
ing in a 4-dimensional subspace with both the noise-free
setup and a noise setup ( σ = 0.04, SNR = 25dB). If
min
i
(1 −

∣∣ŵT
i wj

∣∣) < 0.01, a row wT
j in the true dictionary

Ω is regarded as recovered, where ŵT
i are the atoms of the

trained dictionary. The results are presented in Figure 1. It
can be observed that, after running the SP-ADL algorithm for
300 iterations, 90% of the rows in the true dictionary Ω were
reconstructed for the noise-free case and 84% for the noise
one. In contrast, as shown in Figure 2, the Analysis K-SVD
algorithm recovers 90% of the rows in the true dictionary
Ω for the noise-free setup and 88% for the noise case1 after
100 iterations. Even though the Analysis K-SVD algorithm
took fewer iterations to reach a similar recovery percentage,
the running time in each iteration of the Analysis K-SVD
algorithm is significantly higher than that in our proposed
SP-ADL algorithm. The total runtime of our algorithm (for
generating the results in Figure 1) is about 3125 and 3238
seconds for the noise-free and noise case, respectively. In
contrast, the Analysis K-SVD took about 11420 or 11502

1In [7] the experimental results show 94% and 86%, respectively.
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seconds respectively (Computer OS: Windows 7, CPU: Intel
Core i5-3210M @ 2.50GHz, RAM: 4G). The main reason is
because our algorithm does not need to estimate X in each
iteration of the learning algorithm, as opposed to the Analysis
K-SVD algorithm.
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Fig. 1: Results of SP-ADL for synthetic data.
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Fig. 2: Results of Analysis K-SVD for synthetic data.

4.2. Experiments on natural image denoising

In this experiment, using the test set consisting of three im-
ages commonly used in denoising (Lena, house and peppers)
[7, 10], we perform denoising experiments and compare the
performance of the SP-ADL algorithm with that of the Analy-
sis K-SVD on the same experimental protocol. The denoising
performance is evaluated by the peak signal to noise ratio (P-
SNR) defined as

PSNR = 20log10
255

σe
(12)

where σe is the standard deviation of the pixelwise image er-
ror. The dictionary of size 63× 49 is created by using a train-
ing set of size 20,000 of 7 × 7 image patches. Noise with
different noise level σ, varying from 5 to 20 is added to these

image patches. We also assume that the dimension of the sub-
space r = 7, the same as in [7]. In this experiment we apply
50 iterations to learn the analysis dictionary for both algo-
rithms. The examples of the learned dictionaries are shown in
Figure 3.

The learned dictionaries are employed for patch-based
image denoising by using (2), the results, averaged over 5
trials, are presented in Table 1, from which we can observe
that the performance of the SP-ADL algorithm is better than
that of the Analysis K-SVD when the noise level is increased.
In the same simulation environment, when σ = 5, the SP-
ADL algorithm took about 477 (Lena), 479 (House) and 477
(Peppers) seconds to learn the dictionary, respectively, while
the Analysis K-SVD took about 7887 (Lena), 7973 (House)
and 8029 (Peppers) seconds, respectivly. Clearly, SP-ADL is
much faster than the Analysis K-SVD.

Table 1: Image denoising results (PSNR in dB)

σ Noisy Denoising method Lena House Peppers
Analysis KSVD 38.43 39.20 37.89

5 34.15 SP-ADL 38.40 38.90 37.73
Analysis KSVD 34.85 35.27 33.80

10 28.13 SP-ADL 35.13 35.23 33.83
Analysis KSVD 32.59 33.00 31.31

15 24.61 SP-ADL 33.22 33.25 31.61
Analysis KSVD 31.42 31.49 29.80

20 22.11 SP-ADL 31.90 31.88 30.05

5. CONCLUSION

We have presented a simple and effective algorithm for anal-
ysis dictionary learning. It is closely related to the Analysis
K-SVD algorithm. The difference between the two ADL al-
gorithms is that in the SP-ADL algorithm we directly exploit
the observed data for learning the analysis dictionary, with-
out pre-estimating the signal X from its noisy version Y, as
opposed to the strategy taken by the Analysis K-SVD algo-
rithm. The experiments performed have shown that SP-ADL
algorithm is well suited for the analysis dictionary learning
problem. It is easy to implement and computationally more
efficient than the Analysis K-SVD algorithm.
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