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ABSTRACT

Sparse regularization has been receiving an increasing in-
terest in the literature. Two main difficulties are encountered
when performing sparse regularization. The first one is how
to fix the parameters involved in the regularization algorithm.
The second one is to optimize the inherent cost function that
is generally non differentiable, and may also be non-convex if
one uses for instance an `0 penalization. In this paper, we han-
dle these two problems jointly and propose a novel algorithm
for sparse Bayesian regularization. An interesting property of
this algorithm is the possibility of estimating the regulariza-
tion parameters from the data. Simulation performed with 1D
and 2D restoration problems show the very promising poten-
tial of the proposed approach. An application to the recon-
struction of electroencephalographic signals is finally investi-
gated.

Index Terms— Sparse Bayesian restoration, MCMC
methods, parameter estimation, `0 + `1 regularization

1. INTRODUCTION

Sparse signal and image restoration has been of increasing
interest during the last decades. It has found several fields of
applications such as remote sensing [1] and medical image
reconstruction [2], especially after the emergence of the com-
pressed sensing theory [3]. Data volumes are continuously
increasing, e.g., in recent applications where imaging systems
may deliver multidimensional signals up to 4D (3D + time
for instance) [4]. Accounting for sparsity properties while re-
constructing such signals is therefore of great interest. Since
observation systems are generally ill-posed, regularization
is usually requested to improve quality of reconstructed sig-
nals. Regularization consists of constraining the search space
through some prior information that we inject in the model
to stabilize the inverse problem. Such prior information gen-
erally involves additional parameters that have to be tuned.
Fixing these parameters is actually an open issue, since they
deeply impact the target solution quality. One can fix them
by cross-validation or by using some Bayesian methods such

The authors would like to thank Yoann Altmann for helping them in the
Matlab implementation, as well as Prof. Alexandre Gramfort for his help in
EEG experiments.

as [5]. However, the estimation of these parameters still re-
lies on an external algorithm, which makes the regularization
problem not fully automatic. After estimating these parame-
ters, the cost function associated with the restoration problem
has to be optimized. In the recent literature, variational ap-
proaches have been widely used to solve the corresponding
optimization problem. They generally rely on some iterative
optimization algorithm since most of the edge-preserving pe-
nalizations yield to non-differentiable cost functions whose
extrema have no closed-form expression. In the recent image
processing literature [6, 4, 7], proximal algorithms have been
notably investigated such as forward-backward (FB) [7] and
parallel proximal algorithms (PPXA) [8]. However, these al-
gorithms can only handle convex cost functions such as those
involving `1 or `1 + `2 penalizations [9]. In other words,
regularization problems involving an `0 pseudo-norm penal-
ization cannot be solved using these algorithms.
In this paper, we propose a novel approach to handle this
`0 regularization problem in a Bayesian framework. The
main advantage of our Bayesian restoration method is that
the regularization parameters can be estimated from the data,
allowing the sparsity level of the target signal/image to be de-
termined. The proposed method is fully automatic and does
not need any user interaction. Indeed, Bayesian method have
been widely promoted during the last decades due to their
flexibility in handling complicated models, especially when
model hyperparameters are not easy to set. For instance,
such investigation is clearly stated in the biomedical [10] and
hyperspectral imaging [11] fields.
In recent literature, different priors have been used for sparse
regularization such as Bernoulli-Gaussian [12] or Bernoulli-
exponential priors [13]. The Bernoulli-Laplacian prior in-
vestigated in this work provides sparser solutions when com-
pared to the Bernoulli-Gaussian one. This increased sparsity
is due to the Laplacian term, while accounting for both pos-
itive and negative signal values in contrast to the Bernoulli-
exponential prior.
The paper is organized as follows. In Section 2, the proposed
model and inference scheme are introduced. Experimental
validations are presented in Section 3. Conclusions and future
work are reported in Section 4.
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2. BAYESIAN RESTORATION METHOD

2.1. Problem formulation

Let x ∈ RM be our target signal, which is measured by y ∈
RP through a linear observation operator H. Accounting for
the additive acquisition noise, the observation model we are
interested in can be written as

y = Hx+ n. (1)

Without loss of generality, we only focus here on multi-
plicative linear operators and additive noise. When H is
ill-conditioned, the above inverse problem may be ill-posed.
We propose here to adopt a sparse regularization strategy for
estimating the unknown signal/image x via a Bayesian frame-
work. In the following section, the hierarchical Bayesian
model used for regularization is detailed.

2.2. Hierarchical Bayesian model

2.2.1. Likelihood

Under the assumption of additive Gaussian noise of variance
σ2
n, the likelihood can be expressed as follows:

f(y|x, σ2
n) =

(
1

2πσ2
n

)P/2
exp

(
− ||y −Hx||

2

2σ2
n

)
(2)

where ||.|| denotes the Euclidean norm.

2.2.2. Priors

In our model, the unknown parameter vector to be estimated
is denoted by θ = {x, σ2

n}. In what follows, we introduce
the prior distributions to be used for these two parameters.
Prior for x
In order to promote the sparsity of the target signal, we adopt
here a Bernoulli-Laplace prior for every xi (i = 1, . . . ,M ),
given by:

f(xi|ω, λ) = (1− ω)δ(xi) +
ω

2λ
exp

(
−|xi|

λ

)
(3)

where δ(.) is the Dirac delta function, λ > 0 is the parameter
of the Laplace distribution, and w is a weight belonging to
[0, 1]. This prior is similar to the one used in [13]. However,
since we are considering signals with both positive and nega-
tive coefficients, the exponential distribution is replaced here
by the Laplace one. Assuming the coefficients xi a priori
independent, the prior distribution for x writes:

f(x|ω, λ) =

M∏
i=1

f(xi|ω, λ). (4)

Prior for σ2
n

To guarantee the positivity of σ2
n and keep this prior non-

informative, we use here a Jeffrey’s prior defined as:

f(σ2
n) ∝ 1

σ2
n

1R+(σ2
n) (5)

where 1R+ is the indicator function on R+, i.e., 1R+(ξ) = 1
if ξ ∈ R+ and 0 otherwise. Motivations for using this kind of
prior for the noise variance can be found in standard textbooks
on Bayesian inference such as [14].

2.2.3. Hyperparameter priors

Hyperprior for ω
For simplicity reasons, and to use non-informative priors, we
use here a uniform distribution on the simplex [0, 1] for ω, i.e.,
ω ∼ U[0,1].
Hyperprior for λ
Since λ is real positive, a conjugate inverse-gamma (IG) dis-
tribution has been used as a hyper-prior:

f(λ|α, β) = IG(λ|α, β) =
βα

Γ(α)
λ−α−1 exp

(
−β
λ

)
(6)

where Γ(.) is the gamma function, and α and β are hyperpa-
rameters to be fixed (in our experiments these hyperparame-
ters have been set to α = β = 10−3).

2.3. Bayesian inference scheme

We adopt here a maximum a posteriori (MAP) strategy in or-
der to estimate the model parameter vector θ based on the
likelihood, the priors and hyperpriors introduced hereabove.
If we denote by Φ = {λ, ω} the model hyperparameters, the
joint posterior distribution of {θ,Φ} can be expressed as

f(θ,Φ|y, α, β) ∝ f(y|θ)f(θ|Φ)f(Φ|α, β). (7)

Akin to [13], we propose here to use a Gibbs algorithm
[14] that iteratively samples according to the conditional
posteriors f(x|y, ω, λ, σ2

n), f(σ2
n|y,x), f(λ|x, α, β) and

f(ω|x).

2.3.1. Sampling according to f(σ2
n|y,x)

Straightforward calculations combining the likelihood and the
prior distribution of σ2

n lead to the following posterior:

σ2
n|x,y ∼ IG

(
σ2
n|P/2, ||y −Hx||2/2

)
(8)

which is easy to sample.
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2.3.2. Sampling according to f(λ|x, α, β)

Calculations similar to [13] lead to the following posterior
which is also simple to sample:

λ|x, α, β ∼ IG
(
λ|α+ ||x||0, β + ||x||1

)
(9)

where ||.||0 denotes the `0 pseudo-norm calculating the num-
ber of non-zero coefficients, and ||.||0 is the `1 norm defined

as ‖x‖1 =
M∑
i=1

|xi|

2.3.3. Sampling according to f(ω|x)

Straightforward calculations show that the posterior of ω is a
beta distribution:

ω ∼ B(1 + ||x||0, 1 +M − ||x||0) (10)

according to which it is easy to sample.

2.3.4. Sampling according to f(x|y, ω, λ, σ2
n)

We can easily derive the posterior distribution of each signal
element xi conditionally to the rest of the signal. Straightfor-
ward computations lead to lead to the following form of this
posterior

f(xi|y,x−i, ω, λ) =ω1,iδ(xi) (11)

+ ω2,iN+(µ+
i , σ

2
i ) + ω3,iN−(µ−i , σ

2
i )

where N+ and N− denote the truncated Gaussian distribu-
tion on R+ and R−, respectively. By decomposing x on
the orthonormal basis B = {e1, . . . , eM} such that x =
x̃−i + xiei where x̃−i is nothing but x whose ith element
is set to 0, and denoting vi = y −Hx−i and hi = Hei, the
weights (ωl,i)1≤l≤3 are given by

ωl,i =
ul,i
3∑
l=1

ul,i

(12)

where

u1,i =1− ω

u2,i =
ω

2λ
exp

(
µ2
i+

2σ2
i

)√
2πσ2

iC(µi+, σ
2
i )

u3,i =
ω

2λ
exp

(
µ2
i−

2σ2
i

)√
2πσ2

iC(µi−, σ
2
i ) (13)

and

σ2
i =

σ2
n

||hi||2

µi+ =σ2
i (
hT
ivi
σ2
n

− 1

λ
),

µi− =σ2
i (
hT
ivi
σ2
n

+
1

λ
)

C(µ, σ2) =

√
σ2π

2

(
1 + erf(

µ

2σ2
)
)
. (14)

The main steps of the proposed sampling algorithm are
summarized in Algorithm 1.

Algorithm 1 Gibbs sampler.

Initialize with some x(0)

repeat
Sample σ2

n according to Eq. (8).
Sample λ according to Eq. (9).
Sample ω according to Eq. (10).
for i = 1 to M do

Sample xi according to Eq. (11).
end for

until convergence

After convergence, the proposed algorithm ends up with
sampled sequences that will be used to compute the minimum
mean square error (MMSE) estimator of the unknown param-
eter vector, allowing us to compute the estimated signal x̂, in
addition to σ̂2

n, λ̂ and ω̂.

3. EXPERIMENTAL VALIDATION

In order to validate the proposed method for sparse signal and
image restoration, three experiments have been conducted.
The first two experiments correspond to 1D and 2D signal
restorations. The third experiment handles an electroen-
cephalography (EEG) reconstruction problem. Since we are
in a simulation context, results are evaluated in terms of sig-
nal to noise ratio (SNR) given by 20 log10

||x0||
||x0−x̂|| , where x0

and x̂ are the reference and estimated signals, respectively.

3.1. 1D signal restoration

In this experiment, a 1D sparse signal x of size 100 is re-
covered from its distorted version y observed according to
the model in Eq. (1), where the observation operator H is the
second order difference operator. The observation y has been
simulated by adding a Gaussian noise n of variance σ2

n = 1.
The regularization scheme detailed in Section 2 is used with
the same sparsity promoting priors and hyperparameter set-
ting. Fig. 1 shows the original signal (Reference), the restored
signal obtained with the proposed algorithm (MCMC) and the

3
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restored signal obtained with a PPXA algorithm (referred to
as `1) whose parameters have been initialized by the output
of the proposed algorithm.

0 20 40 60 80 100
−25

−20

−15

−10

−5

0
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10

15
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25

 

 

Reference
MCMC
ℓ1

Fig. 1. Original and restored signals using the proposed method and `1
regularization.

The proposed method provides the smallest estimation
error since the corresponding markers are always closer to
the ground truth signal. Quantitatively speaking, with an
initial SNR of 5.71 dB (observed signal), we achieve an
SNR = 31.33 dB with our method, while the `1 regular-
ization can only reach SNR = 20.05 dB. In addition to the
automatic estimation of the regularization parameter, the pro-
posed method ensures a better sparsity of the target signal
due to the Bernoulli-Laplace prior, which is equivalent to an
`0 + `1 regularization.
Regarding parameter estimation, Fig. 2 illustrates the poste-
rior distributions of parameters σ2

n, λ and ω, as well as their
estimated values. We can easily notice that the estimation of
σ2
n is very accurate since the estimated value (0.98) is very

close to the reference one which is indicated by a vertical
line in Fig. 2[top-right]. Moreover, the restored signal es-
timated with our method shows higher sparsity level since
‖x̂MCMC‖0 = 20 and ‖x̂`1‖0 = 100.

Finally, it is interesting to note that these results have been
obtained after 600 iterations including a burn-in period of 200
iterations. The requested computation time using a Matlab
implementation on a 64-bit 2.00GHz i7-3667U architecture
was about 22 seconds.

3.2. 2D image restoration

In this experiment, a 2D sparse image x of size 26 × 26 is
recovered from its distorted version y observed according
to the model in Eq. (1) (with the same observation operator
and noise level as in the first experiment). Fig. 3 illustrates
the original, observed, and reconstructed images using our
method and an `1 regularization.

The same conclusions apply to this example. The reported
SNR values corroborate the clear advantage of the autocali-
brated `0 + `1 Bayesian regularization made possible by our
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Fig. 2. Estimated posterior distributions of parameters σ2
n, λ and ω.

Ground truth Observed: SNR = -11.15 dB
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Fig. 3. Original, observed and restored images using the proposed method
and `1 regularization.

algorithm, compared to the variational `1 regularization (per-
formed using parameters estimated by our algorithm). Spar-
sity levels of the estimated images show also the improve-
ment obtained with our method since ‖x̂MCMC‖0 = 103 and
‖x̂`1‖0 = 660. For this experiment, the computational time
with the same implementation and number of iterations as in
the previous experiment was about 94 seconds.
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3.3. EEG reconstruction

The last experiment addresses an EEG reconstruction prob-
lem where the observed signals correspond to the activity
measured by each electrode during the acquisition time. Us-
ing the MNE software1, we simulated a small EEG dataset
using 20 electrodes with 35 sources (35 voxels on the brain
surface), where only 4 of them have been chosen to be active.
The simulation involved 21 time points, which means that we
have to recover a 35 × 21 image x from an observation y of
size 20 × 21. The linear operator here represents simply the
brain model geometry. Fig. 4 displays the ground truth and
reconstructed images using our method and an `1 regulariza-
tion. Visually speaking, our method gives sparser recovered
signal while preserving most of the activated sources. The ob-
tained SNR values show also that the proposed algorithm out-
performs the `1 regularization from a quantitative viewpoint.
As regards sparsity levels, the same conclusion as for the first
two experiments applies, since we have ‖x̂MCMC‖0 = 51 and
‖x̂`1‖0 = 730.
Computational time with the same implementation and num-
ber of iterations as in the previous two experiments was about
95 seconds.

Ground truth `1 regularization: SNR= 9.63 dB
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Fig. 4. Original, observed and restored images using the proposed method
and `1 regularization.

4. CONCLUSION

We proposed in this paper a method for Bayesian sparse reg-
ularization using a Bernoulli-Laplace prior. This prior makes
the `0 + `1 non-convex regularization problem feasible in a

1http://www.martinos.org/mne/

Bayesian framework, in contrast to variational methods which
require the convexity of the cost function. In addition, the pro-
posed method estimates the regularization parameters directly
from the data. Validation on 1D and 2D restoration problems,
as well as in EEG reconstruction, show the efficiency of the
proposed method for recovering sparse signals. As a perspec-
tive, we will handle the problem of correlation between sig-
nal coefficients. Future work will also focus on the validation
of our method on real EEG signals, as well as for other real
world applications such as image deconvolution.
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