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ABSTRACT

The comb-type pilot-aided channel estimation in OFDM sys-

tems is here considered. The number of pilot subcarriers is

generally tuned to tradeoff between performance and spectral

efficiency. For time domain sparse channels, the application

of the recent theory of Compressed Sensing has proved its

efficiency to both ameliorate the estimation accuracy and re-

duce the transmitted overhead. The performance and unique-

ness guarantees remain however closely related to the pilots

placement, which are optimized prior to transmission. Few

works have addressed the pilot allocation issues. To avoid the

computationally prohibitive exhaustive search over all pos-

sible allocations, they proposed sub-optimal solutions. This

contribution proposes an enhanced pilot design scheme based

on Genetic Algorithms. First, we set the adopted problem for-

mulation in the frame of Genetic Algorithms. Then, we pro-

pose two algorithms, tailored for the decomposition matrix

coherence minimization. Simulation results prove the pro-

posed schemes effectiveness and performance enhancement

compared to former pilot design schemes.

Index Terms— Sparse channel estimation, OFDM Sys-

tems, Pilot Allocation, Compressed Sensing, Coherence mea-

sure, Genetic Algorithms.

1. INTRODUCTION

High data rate transmissions implied in most of the present

and future wireless communication standards are usually

subject to severe frequency selective channels. Most of these

standards, such as LTE, WiFi and WiMAX have adopted the

OFDM modulation technique for its ability to avoid inter

symbol interference and to drastically simplify the equal-

ization task. For effective coherent demodulation, accurate

channel estimation is however required [1]. Conventional

pilot-assisted channel estimators usually tradeoff between

estimation accuracy and spectral efficiency in the pilot sub-

carriers number choice. They also use uniform pilot alloca-

tion [2]. For channels exhibiting a sparse response in time

domain, the Compressed Sensing (CS) theory application has

proved its suitability to simultaneously reduce the number

of, possibly not uniformly placed, pilots while enhancing the

channel estimation accuracy [3]-[5]. In this paper, we address

the problem of the sensing matrix optimization which corre-

sponds to pilots pattern design.

By applying CS methods, a denoised estimate of the channel

impulse response is obtained through a linear decomposition

of the Channel Frequency Response (CFR) Least Squares es-

timate on pilot subcarriers over a partial DFT sensing matrix.

The decomposition performance and uniqueness guarantees

in terms of maximal non zero entries of the channel impulse

response, are closely related to the decomposition matrix

choice, related in this framework to the pilots placement.

Some measures exist that are able to quantify the sensing

matrix quality. The herein adopted quality measure of the

sensing partial DFT matrix is that of coherence [6]. The

coherence indeed characterizes the maximal correlation be-

tween the CS matrix pairwise columns. In [7], it is shown

that minimizing the coherence is equivalent, for some spe-

cific pairs of (N, Np), where N is the number of channels

and Np is the number of pilots, to exactly balance between

all possible cyclic difference occurrences. For improper pairs

(N,Np), the exhaustive search over the huge set of allocation

possibilities results in a computationally prohibitive com-

plexity. Few works have addressed the pilot design issues

and proposed sub-optimal computationally efficient solutions

[7]-[11].

The Genetic Algorithms (GA) [12] offer a powerful optimiza-

tion tool, especially suitable for nonlinear criteria and those

where the solution belongs to a large dimensional space.

Thanks to their natural selection process, the GA have the po-

tential to avoid local optima and to guide the criterion, to be

optimized, known as fitness function, towards near-optimum

solutions.

In this paper, the Genetic Algorithms approach is adopted,

where two original schemes are proposed to optimize the

DFT sensing matrices coherence measure.

The first scheme consists of a Constrained Iterative Pro-

cessing (CIP), where the population individuals, evolving

through generations, are forced, through random transforma-

tions, to lie within the solution candidates set. The second
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scheme avoids such random transformations and operates in

a Forward-Backward Processing (FBP) fashion that insures

the convergence to an element within the potential solutions

set while optimizing the coherence measure.

The remainder of this paper is organized as follows. Section 2

formulates the DFT sensing matrix optimization in the frame

of channel estimation and revisits the methods of [7] and

[10] recently proposed to this aim. Section 3 first formulates

the DFT submatrix coherence optimization in the Genetic

Algorithms frame, then it details the two proposed schemes

CIP and FBP. Section 4 is devoted to assess the new schemes

relevance. Finally, some concluding remarks are drawn.

Notations: Mi indicates the ith column of M. Card(•) denotes the

argument cardinal. 1N is a ones vector of length N . ⊕ stands for

the addition modulo 2 (logical exclusive OR: Xor) and ¯ denotes

the element-wise product (logical And).

2. DFT SENSING MATRICES FOR CHANNEL

ESTIMATION IN OFDM SYSTEMS

The application of CS theory to sparse channel estimation

has a double benefit. It first allows to reduce the number

of, possibly non uniformly placed pilots, below the mini-

mal required number of pilots which coincides for arbitrary

(not sparse channels) to the channel memory length. These

constraints relaxation allows to achieve a higher spectral ef-

ficiency. CS theory further allows, by exploiting the sparsity

property, inherent to some channels structure, to obtain en-

hanced solutions compared to those not accounting for the

sparsity features.

By sparse channels, we indeed refer to channels whose equiv-

alent sampled impulse response presents a reduced number

of significant energy (nonzero and non near zero valued) co-

efficients with respect to the channel memory length.

In the frame of OFDM pilot-assisted sparse channel estima-

tion, the CS matrix design step, is carried prior to transmis-

sion, and aims to optimize the Np pilot subcarriers pattern,

among a total number of N subcarriers. This is realized

through the DFT submatrix Fp choice, where Fp is obtained

from the N × N DFT matrix by the Np rows correspond-

ing to pilots positions selection. Fp is chosen to optimize a

given measure, corresponding in this work to minimize the

coherence, which is expressed as

µ(Fp) = max
1≤i 6=j≤N

|〈Fpi
,Fpj

〉|

‖Fpi
‖2‖Fpj

‖2
, (1)

where Fpi
is the matrix Fp ith column.

Noisy outputs on pilot subcarriers at the receiver side can be

expressed as [7]-[10]

yp = ApFph + n, (2)

where Ap is an Np × Np diagonal matrix made of the pi-

lot symbols, Fp is a DFT submatrix with rows corresponding

to the Np pilot tones positions, h is the equivalent discrete

channel impulse response and n is a complex normally dis-

tributed noise. The channel estimation corresponds to recover

the sparse impulse response h from yp, and its performance

is sensitive to the CS matrix Fp choice.

In Cyclic Prefixed (CP) OFDM systems, the CP length Ng is

generally chosen larger than the channel memory. Incorporat-

ing these considerations, the channel estimation is reduced to

recover h of length Ng , with K ≤ Ng nonzero entries, from

yp. The sensing matrix Fp is in this way reduced to a selec-

tion of Np rows from the block submatrix formed by the first

Ng columns of the N × N DFT matrix.

Let S denote the set of possible choices of Np subcarriers

among N , then its cardinality is given by Card(S) = C
Np

N =

N !
Np!(N−Np)! , where n! =

n∏

i=1

i, and Fp with size Np × Ng

should be chosen within S such that its coherence is mini-

mized.

2.1. Scheme of Pakrooh et al.

In [7], it is shown that non uniformly spaced pilots based on

Cyclic Difference Sets (CDS) are optimal in the sense of min-

imizing the DFT submatrix coherence. For improper pairs

of (N, Np), for which no CDS exist, a sub-optimal itera-

tive scheme with Np − 1 steps is proposed, where at each

step/iteration a new pilot is positioned with the firstly cho-

sen ones according to a specific criterion. Denoting by ai the

number of occurrences of pilots positions difference i where

i ∈ {1, 2, · · · , N−1}, the CDS are shown to verify the equal-

ity between all {ai}. Following this, at each step, the pro-

posed sub-optimal scheme chooses the additional pilot posi-

tion which minimizes the variance of {ai}. In [7], no consid-

erations exploit the CP length knowledge and the CS matrix

is of size Np × N .

2.2. Scheme of Qi et al.

In [10], a backward tree-based scheme iteratively constructs

the CS matrix by eliminating from the initial N × Ng DFT

submatrix one row at each of the N − Np iterations. At each

step/iteration, the qB minimal coherence submatrices are se-

lected as candidates to be considered for the next iteration.

By exploiting the CP length knowledge, the sensing matrix

can be reduced to its first Ng columns. This size reduction not

only decreases the computational burden for coherence eval-

uation but also guarantees that the chosen pilots minimize the

coherence of the effective part of the sensing matrix.

3. PROPOSED GA APPROACH-BASED

ALGORITHMS

The GA are based on a generic structure that should be specif-

ically reformulated and adapted to each problem. They iter-
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atively operate along several generations to optimize an ob-

jective function or criterion, known as fitness function, until a

pre-fixed maximal number of generations or a stop condition

is reached. During the evolutionary process, at each iteration,

corresponding to one generation, after evaluating the fitness

function for each individual, a portion of the best ranked is

chosen through the selection process to transit into the next

generation. To preserve good individuals properties, a cross-

ing is operated, which corresponds to cross some pairs of indi-

viduals, which are called parents. This is achieved by mixing

their corresponding chromosomes, which characterize their

elementary genetic properties. The so-obtained new individ-

uals, called children, are then included within the next gen-

eration population. To avoid the criteria critical local optima,

some new individuals are introduced through both the muta-

tion process, which introduces random changes in some indi-

viduals chromosomes, and through random individuals inser-

tion in each new generation population.

3.1. Problem formulation in the Genetic Algorithms

frame

We begin by providing the basic implied entities definitions

and formulate the different processings involved in the CIP

and FBP herein proposed GA schemes.

• Generation/ Population/ individuals/ chromosomes:

in each generation, a population which is a set of in-

dividuals is generated. Each individual is coded as a

binary vector of length N whose entries correspond to

the chromosomes. The ith chromosome value 1 or 0

indicates if the ith subcarrier, among N , is dedicated

respectively to carry pilot or data.

• Fitness function: it computes, for every individual, the

coherence of the DFT submatrix with rows positions

indicated by 1 valued chromosomes.

• Crossing: we here adopt a multi-point crossing where

for each pair of parents I1 and I2 (2 individuals), we

define a binary mask m of length N and its comple-

mentary (modulo 2) mask mc = m ⊕ 1N , then the

children are obtained as

c1 = m ¯ I1 + mc ¯ I2, and (3)

c2 = mc ¯ I1 + m ¯ I2. (4)

Note that the addition in c1 and c2 construction is nat-

urally modulo 2 since m and mc are originally chosen

to be complementary (modulo 2).

• Mutation: for each individual I to be muted, a random

binary mask m is generated, then the muted version is

I′ = I ⊕ m. (5)

3.2. Constrained Iterative Processing CIP

In this scheme, the initial population and new individuals

to introduce within each generation are taken as binary se-

quences of length N where the occurrence of 1 is exactly Np,

thus corresponding to an element of the solution candidates

set S.

The above pilot allocation problem formulation in the GA

frame implies multiple operations among which the crossing

and mutation processing. Following the adopted procedures,

it is obvious that both the crossing and mutation may produce

individuals not contained within S, even when operating over

individuals taken from the potential solutions set. The pro-

posed CIP scheme constrains the so-evolving solutions to lie

within S.

For each new individual, obtained after either crossing or mu-

tation, let n1 denote the number of 1 valued chromosomes.

If n1 = 1, to classify the individual, the fitness function is

directly evaluated. Otherwise if n1 6= Np, before fitness

function evaluation a transformation is carried. If n1 > Np,

then a set of n1 − Np randomly chosen 1 valued chromo-

somes are transformed into 0 and respectively if n1 < Np,

a set of Np − n1 randomly chosen 0 valued chromosomes

are transformed into 1, insuring in this way the transformed

individual to lie within S.

3.3. Forward-Backward Processing FBP

In this scheme, the population is generated randomly from all

the possible binary vectors of length N . Then, for each indi-

vidual evaluation, if the number of 1 valued chromosomes n1

verifies n1 = Np, the coherence is directly evaluated. Oth-

erwise, if n1 < Np (or resp. n1 > Np), a forward (resp.

backward) processing is operated to bring the number of 1

valued chromosomes to Np.

Contrarily to CIP, which constrains the individuals to lie in

S by randomly inverting a random subset of chromosomes

values, the FBP optimizes the sequence choice from an ini-

tial one, not in S, to an other one within S in such a way to

guide it towards the lowest coherence possible solution. This

is achieved by using the greedy principles of the forward (add

one pilot per step as in [7]) or backward (remove one pilot per

step as in [10]), where for both schemes the herein optimized

criterion is that of the coherence measure.

For each individual verifying n1 > Np, a backward process-

ing of n1 − Np iterations of the scheme of [10] is operated

where in each iterations only the lowest allocations coherence

are kept as possible candidates for the next iteration. For each

individual such that n1 < Np, Np − n1 iterations of a for-

ward processing like in [7] is operated where the coherence

is minimized rather than the the cyclic difference occurences

variance.

In both of our adopted forward and backward processing, we

envisage a generalized tree-based structure, in the manner of

[10] where, rather than choosing only the best (least coher-
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Population Maximal nb. Selection Crossing Mutation

size np of generations ratio ratio ratio

nmax

40 100 0.2 0.2 0.2

Table 1. Proposed CIP and FBP Genetic Algorithms parame-

ters.

Npµ(Fp) Optimized Pilot Placement

Forward 6.1937 1,2,4,8,13,42, 57,77,96,109,119,127

Backward 4.1612 6,26,58,63,67,75,83,87,91,103,111,122

CIP 3.9529 2,6,10, 34,41,66,70,80,84,88,103,123

FBP (1,1) 3.2803 4,10,14,29,35,39,55,64,77,85,123,127

FBP (2,2) 3.1642 7,11,22,43,69,74,78,95,110,114,119,124

Table 2. Optimized pilot allocations coherence performance.

ence) solution in each iteration, we select the qF best solu-

tions in the forward processing (case n1 < Np) resp. qB

best solutions (case n1 > Np) in the backward processing,

to be considered in the next iteration of the forward (or resp.

backward) processing, until reaching an element within S for

which n1 = Np.

4. APPLICATION TO COMB-TYPE CHANNEL

ESTIMATION IN OFDM SYSTEMS

In this section, we evaluate the proposed schemes perfor-

mance first in terms of coherence minimization capacity, then

in terms of channel estimation performance.

The channel estimation quality is evaluated through the chan-

nel frequency response (CFR) normalized MSE (NMSE), and

the Symbol Error Rate (SER).

We consider an OFDM system with N = 128 subcarriers

where Np = 12 pilot subcarriers are used for channel estima-

tion purpose. A sparse multipath of length L = Ng = 25 is

generated where K = 3 nonzero coefficients are randomly

positioned within the CP. The channel is Rayleigh distributed

with independent impulse response coefficients hi verifying

hiCN (0, σ2
i ) where σ2

i exhibits an exponentially decaying

power-delay profile, with decaying speed β = 2
Ng

.

The GA corresponding to CIP and FBP use the parameters

specified in table 1. These parameters were adjusted by trial

and error method. The optimized coherence by the different

schemes is given in table 2 with the corresponding pilots

patterns, FBP (m,n) corresponds to FBP for the choice of

qF = m and qB = n tree-based schemes.

The obtained results show the advantage of the GA-based

proposed schemes over both the schemes of [7] and [10].

Figure 1 depicts the fitness worst, best and mean values be-

havior through generations, obtained by CIP and FBP(1,1)

0 10 20 30 40 50 60 70 80 90 100
3

4

5

6

7

8

9

# Generation

N
p

µ
( 

F
p
)

optimal CIP
mean CIP
worst CIP
optimal FBP
mean FBP
worst FBP

Fig. 1. CIP and FBP (1,1) Fitness best, mean and worst

values. Average over 10 Monte Carlo trials.

schemes, averaged over 10 Monte Carlo trials. It shows the

more important dynamics of the fitness function realized by

CIP compared to the FBP through generations, which can

be attributed to its more random evolution of the individuals,

compared to FBP. It also shows the decrease of the best solu-

tions coherence through generations. Figure 2 superimposes

the NMSE on CFR, obtained by the Orthogonal Matching

Pursuit (OMP) algorithm [13] for different pilots allocations,

and the Least Squares solution adopting the true nonzero co-

efficients positions (Oracle estimator). Figure 3 exhibits the

SER in the case of data taken from a QPSK constellation.

The obtained results show the effectiveness of the proposed

schemes with a clear advantage of the FBP over CIP. This

advantage can be attributed to the association of GA natu-

ral selection process with the Forward-Backward coherence

optimization, which allows for relatively small populations

to converge to effective solutions in few generations. For

optimized pilot pattern computation, the number of tested

individuals is here np × nmax = 40 × 100 = 4000 which is

very small compared to Card(S) = 2.3726 1016. Analyzing

the impact of the parameters qF and qB shows that no suf-

ficiently significant improvement is obtained by increasing

their values, through a FBP tree-based processing, compared

to the case qF = qB = 1.

5. CONCLUSION

In this paper, the problem of pilot allocation optimization for

channel estimation in OFDM systems is considered. In the

compressed sensing frame, this is equivalent to optimizing

the sensing partial DFT matrix coherence measure. We pro-

posed two optimization tailored schemes in the Genetic Algo-

rithms framework. The first scheme forces the individuals to

4
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Fig. 2. Normalized MSE on Channel Frequency Re-

sponse.

remain within the solution candidates set by imposing random

changes within the individuals chromosomes before their fit-

ness evaluation. The second scheme however operates, for

each individual, through a combined forward and backward

processing to converge to a solution within the candidates

set while optimizing the sensing matrix coherence. This so-

lution is then classified within its generation. The applica-

tion to sparse channel estimation in OFDM systems shows

the efficiency of the Forward-Backward Processing proposed

scheme and the performance improvement, compared to for-

mer pilot pattern optimization schemes.
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