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ABSTRACT

This paper considers the watermark embedding prob-
lem onto Compressive Sensed measurements of a signal
that is sparse in a proper basis. We propose a novel wa-
termark encoding-decoding algorithm that exploits the
sparsity of the signal to achieve dense watermarking. The
proposed algorithm is robust under additive white Gaus-
sian noise as well as impulsive noise or their mixture. The
experimental results show also that the algorithm achieves
an embedding capacity superior to those of classical `2 and
`1 embedding algorithms.

Index Terms— Watermarking, Compressive Sensing,
Sparse Signals

1. INTRODUCTION

Traditional methods in data acquisition follow Shannon
/Nyquist sampling theorem; one must sample a band-
limited signal by at least two times faster than the signal
bandwidth. However, signals that we encounter in many
applications are sparse in some proper base, and it is ad-
vantageous to compress data by using their sparse repre-
sentations for efficient storage and transmission. Compres-
sive Sensing (CS) shows that certain signals can be captured
from far fewer samples as compared to conventional meth-
ods, and they can be reconstructed by developing effective
non-linear reconstruction algorithms [1], [2], [3].

In addition to efficiently transmitting or storing CS-
based measurements, one may wish to embed a watermark
onto these measurements. Hence, the copyright informa-
tion or meta-data can be embedded onto CS measure-
ments. Such a watermarking scheme must satisfy the fol-
lowing properties: i) the watermark information must be
decoded exactly, and ii) the reconstruction of the signal
must not suffer at the decoder side.

Channel decoding counterpart of the CS has been de-
veloped in [4] for linear decoding of a message from erro-
neous version under unbounded sparse noise. Sheikh and
Baraniuk use this idea to embed watermark onto a sparse
signal (e.g. DCT coefficients of an image) [5]. In our recent
work [6], we proposed a watermarking scheme that embeds

watermark directly onto CS measurements. This enables to
embed watermark information while sensing. In this pa-
per, we extend our recent work [6] and propose a robust re-
construction algorithm when the watermarked samples are
subject to i) an additive white Gaussian noise, and ii) sum of
an unbounded impulsive noise and an additive white Gaus-
sian noise.

This paper is structured as follows: Section 2 gives a
brief review of Compressive Sensing and robust recovery
approaches in the presence of i) additive white Gaussian
noise, and ii) impulsive noise. In section 3, we present our
watermarking scheme and reconstruction method in the
presence of i) additive white Gaussian noise, and ii) sum of
an unbounded impulsive noise and an additive white Gaus-
sian noise. Experimental results of the proposed methods
are presented in Section 4.

2. COMPRESSIVE SENSING

A signal x 2 RN is a k-sparse if and only if at most k entries
of x are non-zero. Let s 2 RN be a k-sparse signal in the
√ space that is expressed as a linear combination of N or-
thonormal vectors that form a basis √, such that

s =√x. (1)

Instead of using traditional data acquisition and com-
pression methods as in Shannon/Nyquist sampling theo-
rem; the data is transformed to a basis where it can be rep-
resented sparsely using x = √T

s. One can sample data di-
rectly from the signal using CS as

y =©s, (2)

where y 2Rm is the measurement vector and © is an m £N
measurement matrix. Rearranging the equation yields

y =©s =©√x = Ax, (3)

where A is an m£N matrix and the nature of the CS requires
m ø N so that CS method has advantages we discussed
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above on traditional Nyquist-Shannon based data acquisi-
tion.

The reconstruction method aims to estimate the signal
x̂ which has at most k non-zero values, from the underde-
termined system of equations (2), (3). Note that, a sparse
basis √ can be chosen at reconstruction time and is not di-
rectly needed for acquisition. Although the equation y = Ax

is underdetermined for the case k < m ø N, if the matrix A
satisfies the Restricted Isometry Property (RIP), x̂ can be re-
constructed exactly using proper reconstruction algorithm.
Candes and Tao introduces RIP in [4] as follows:

Definition: A matrix A satisfies RIP of order k if there
exists a ±

k

2 (0,1) such that

(1°±
k

)kxk2
2 ∑ kAxk2

2 ∑ (1+±
k

)kxk2
2) (4)

holds for all x 2ß
k

where ß
k

= {x : kxk0 ∑ k}.
If A satisfies the RIP of order 2k with ±2k

<
p

2°1, the k-
sparse vector x given in equation (3) can be reconstructed
exactly by solving the following convex optimization prob-
lem

x̂ = argmin
x

kxk`1 s.t. y °Ax = 0. (5)

When A is a random matrix with Gaussian or sub-
Gaussian entries, then m ∏ O((k) log(N/k)) measurements
suffice to recover the signal exactly with overwhelming
probability [7].

In a more realistic scenario, the measurement may be
corrupted by a noise:

y = Ax + z. (6)

In this paper, we consider measurement vector cor-
rupted by both i) Gaussian noise and ii) impulsive noise.

2.1. CS Measurements under Additive White Gaussian
Noise (AWGN)

If the CS measurement vector is corrupted by a bounded
noise provided that kzk`2 ∑ ≤, it is possible to approximate
x by solving the optimization problem

x̂ = argmin
x

kxk`1 s.t.
∞∞

y °Ax

∞∞
`2
∑ ≤. (7)

Optimization problem defined in equation (7) is known
as Basis Pursuit Denoising (BPDN) [8] and if RIP is satis-
fied with ±2k

<
p

2°1, it is possible to approximate x with a
bounded error :

kx ° x̂k`2 ∑ C0≤, (8)

where C0 depends on ±2k

[7].

If the elements of z 2 Rm given in equation (6) are
i.i.d. according to a Gaussian distribution with zero mean
and variance æ2, the squared norm kzk2

`2
becomes a chi-

squared random variable with mean æ2
m and standard

deviation æ2p2m. It is well-known that the probability that
kzk2

`2
exceeds its mean plus two or three standard deviation

is small. Then, solving the optimization problem given in
equation (7) with

≤=æ
q

(m +∏
p

2m) (9)

gives an approximation of x with bounded error as in equa-
tion (8) [9].

Thus we have considered the case of measurement vec-
tor that is corrupted by noise with bounded energy. The sit-
uation when measurement vector y = Ax is corrupted by a
bounded noise model has been considered in [9], [10].

2.2. CS Measurements under Impulsive Noise

In a realistic scenario, measurement vector can be cor-
rupted by an impulsive noise due to shot noise, malfunc-
tioning hardware, transmission errors [11]. In this scenario,
portions of the measurement vector can be completely cor-
rupted by a malicious user. In these scenarios, impulsive
noise variance may be very large, and it may lead to a large
reconstruction error in equation (8). Impulsive noise model
has been investigated in [12], where the authors use prob-
abilistic approach and propose a non-convex optimization
program to recover the signal. In [4], impulsive noise model
has been investigated, but in the context of error correction
coding. In [11], noise model that is sparse in a proper ba-
sis has been considered in wide range of amplitudes and
error rates. In this study, the measurement vector that is
corrupted by a noise is modeled as

y

n

= Ax +≠z =
£
A |≠

§∑
x

z

∏
, (10)

where the signal x is k-sparse, the noise z is L-sparse, and
the matrix ≠ is m £m unit basis. In this model, one can
solve the following optimization problem

∑
x̂

ẑ

∏
= arg min

[x z]T

∞∞∞∞

∑
x

z

∏∞∞∞∞
`1

s.t. y

n

°
£
A |≠

§∑
x

z

∏
= 0. (11)

3. PROBLEM STATEMENT AND THE PROPOSED
METHOD

While sending the signal with the measurements given in
equation (2), we also want to transmit additional, which can
be a secret message. In this scenario, we wish to embed

2
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y

w

= A
x

+ B
w

Fig. 1. Pictorial representation of y

w

an M bit dense message (watermark) w 2 {°a,+a}M onto
this measurement vector y . In this paper, we model wa-
termarked measurement y

w

2 Rm as y

w

= Ax +Bw , where
B is an m £ M coding matrix generated by a secret seed,
known to both encoder and decoder where M < m ø N. A
pictorial representation of the embedding scheme can be
found in Fig. 1. In order to meet the embedding power
constraint kBwk`2 ∑ P, a is chosen accordingly. The water-
marked measurements can be altered by a malicious user
or by channel imperfections, and the decoder receives

y

n

= Ax +Bw + z. (12)

Then the watermarked compressive sensing measure-
ment problem is formulated as follow: Recover the k-sparse
x signal and M bit watermark w from the knowledge of y

n

.
In the case where the noise term vanishes, the recovery of x

should be exact; otherwise it should be a close approxima-
tion to the true signal. On the other hand, we assume that
the watermark information can not tolerate any loss. In ei-
ther case, recovering of w should be exact. In the light of
these requirements, we look for maximum achievable em-
bedding rate R = M/m in bits/measurement for Prob(w 6=
ŵ) ! 0. In the meantime, we are interested in the recon-
struction of x with a small mean error E{kx ° x̂k2}.

3.1. Case 1: Decoding under Additive White Gaussian
Noise (AWGN)

The watermarked compressive sensed measurements can
be corrupted by additive Gaussian noise and this can be
modelled as z ª N (0,æ2I). We can rearrange equation (12)
as follows

y

n

= C
∑

x

w

∏
+ z, (13)

where C = [A|B].

3.1.1. Classical `2 Minimization

One classical solution of underdetermined system given in
equation (13) can be the minimum norm solution. The so-
lution x̂ and ŵ that minimizes

∞∞Ax̂ +Bŵ ° y

n

∞∞
`2

is

∑
x̂

ŵ

∏
= CT(CCT)°1

y

n

. (14)

3.1.2. `1 Minimization

Alternatively, as in Section 2.1, the problem can be formed
as BPDN, which is solved by minimizing a (k +M)-sparse
vector [x w]T of length N + M. This can be done in two
steps. First, the vector [x̃ w̃]T can be found via

∑
x̃

w̃

∏
= arg min

[x w]T

∞∞∞∞

∑
x

w

∏∞∞∞∞
`1

s.t.
∞∞∞∞y

n

°C
∑

x

w

∏∞∞∞∞
`2

∑ ≤1. (15)

If C satisfies the RIP of order 2(k + M) with ±2(k+m) <p
2°1, the k-sparse x and the dense w can be reconstructed

approximately by using m ∏ O((K+M)log((N+M)/(K+M)))
measurements with bounded error such that

∞∞∞∞

∑
x

w

∏
°

∑
x̃

w̃

∏∞∞∞∞
`2

∑ C1≤1. (16)

Secondly, an additional step can be performed to in-
crease the maximum achievable embedding rate R = M/m

in bits/measurement when Prob(w 6= sgn(w̃)) ! 0. Since
it is known that watermark information w

i

2 {°a,+a}, i 2
{1,2, ..,M}, ŵ can be estimated by thresholding w̃ as follows

ŵ

i

= a § sgn(w̃

i

). (17)

After the estimation of ŵ using equation (17), we can
estimate x̂ by solving

x̂ = argmin
x

kxk`1 s.t.
∞∞(y

n

°Bŵ)°Ax

∞∞
`2
∑ ≤1. (18)

By using equation (15), (17) and (18),it is possible to re-
construct k-sparse signal x̂ and watermark information ŵ .
It is relatively intuitive that the optimization problem given
in equation (15) is not the optimal set-up for our problem,
since w is dense. Because of this reason, we propose the fol-
lowing robust recovery approach to decode the watermark-
ing scheme in equation (12).

3.1.3. Proposed Method

Proposed decoding algorithm can be decomposed into
three steps:

a) We construct a matrix F which annihilates the matrix
B on the left, i.e., such that FB = 0. Then apply F to y

n

=
Ax+Bw+z, gives ỹ = F(Ax+Bw+z) = FAx+z̃, where z̃ = Fz.
Then, a k-sparse signal x̃ can be estimated via

x̃ = argmin
x

kxk`1 s.t.
∞∞

ỹ °FAx

∞∞
`2
∑ ≤1. (19)
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The important point in this system is that the matrix FA
must satisfy the RIP of order 2k.

b) In the second step, since B is a tall matrix, if we use x̃

that is found in step one, the least-squares method gives us
an approximate estimate w̃ as follows

w̃ = (BTB)°1BT(y

n

°Ax̃). (20)

c) As we discussed in the `1 minimization method, since
it is known that watermark information w

i

is either °a or
+a, ŵ can be estimated using ŵ

i

= a § sgn(w̃

i

), and x̂ can
be found as in the equation (18).

3.2. Case 2: Decoding under Sum of Impulsive and Gaus-
sian Noise (AWGN)

If watermarked measurements are corrupted by the sum of
impulsive noise and additive white Gaussian noise, we can
model this system as

y

n

= Ax +Bw + zI + zG, (21)

where zG ªN (0,æ2
GI) and zI is L-sparse noise.

3.2.1. `1 Minimization

One possible solution for this system is to use `1 minimi-
zation of a (k + M + L)-sparse vector [x w zI]T of length
N+M+m. This can be done in two steps. First, the vector
[x̃ w̃ z̃I]T can be found via

2

4
x̃

w̃

z̃I

3

5= arg min
[x w z]T

∞∞∞∞∞∞

2

4
x

w

z

3

5

∞∞∞∞∞∞
`1

s.t.

∞∞∞∞∞∞
y

n

°
£
A | B | I

§
2

4
x

w

z

3

5

∞∞∞∞∞∞
`2

∑ ≤1.

(22)

Secondly, an additional step can be performed as we
did in Section 3.1.3. Since it is known that watermark in-
formation w

i

is either °a or +a, ŵ can be estimated as
ŵ

i

= a § sgn(w̃

i

) . Then, x̂ can be estimated via

x̂ = argmin
x

kxk`1 s.t.
∞∞(y

n

°Bŵ ° z̃I)°Ax

∞∞
`2
∑ ≤1. (23)

However, it is possible to reconstruct k-sparse signal x

and M bit watermark w using equation (22) and (23), it is
not optimal set-up as we discussed before, because w is not
a sparse vector.

3.2.2. Proposed Method

The proposed decoding algorithm can be decomposed into
three steps:

a) We construct a F matrix which annihilates the matrix
B on the left, i.e., such that FB = 0. Then apply F to y

n

=
Ax+Bw+zI+zG, gives ỹ = F(Ax+Bw+zI+zG) = FAx+FzI+z̃,
where z̃ = FzG. Then, [x̃ z̃I]T can be estimated via

∑
x̃

z̃I

∏
= arg min

[x z]T

∞∞∞∞

∑
x

z

∏∞∞∞∞
`1

s.t.
∞∞∞∞ỹ °

£
FA | F

§∑
x

z

∏∞∞∞∞
`2

∑ ≤1. (24)

b) In the second step, since B is a tall matrix, if we use
x̃ that is found in step one, watermark w̃ can be estimate
using least-squares method as follows:

w̃ = (BTB)°1BT(y

n

°Ax̃ ° z̃I). (25)

c) Finally, since it is known that watermark information
w

i

is either °a or +a, ŵ can be estimated using ŵ

i

= a §
sgn(w̃

i

) and x̂ can be found via

x̂ = argmin
x

kxk`1 s.t.
∞∞(y

n

°Bŵ ° z̃I)°Ax

∞∞
`2
∑ ≤1. (26)

4. EXPERIMENTAL RESULTS

In this section, we present performance results of the pro-
posed decoding algorithms. We embed M bit length wa-
termark message on to k = 30-sparse signal of N = 512
using m = 145 measurements. We look for maximum
achievable embedding rate R in bits/measurement when
Prob(w 6= ŵ) ! 0. And also, we are interested in keeping re-
construction error E{kx ° x̂k2} at reasonable level such that
E{kx°x̂k2} ∑ ≤. In our experiments, we generate x, w vectors
such that kxk`2 = 1, kwk`2 = 0.25, and produce matrices A
and F as random Gaussian matrices. Then, columns of the
encoding matrix B are obtained from span of null space of
F. For each M value, experiments are conducted 250 times,
and corresponding Prob(w 6= ŵ) and E{kx ° x̂k2} values are
reported.

When we consider the Gaussian noise for æ = 0.001 in
equation (13), Fig. 2 shows that the proposed method given
in Section 3.1.3 achieves R ∑ 20/145 bit/measurement,
Prob(w 6= ŵ) ! 0 . Furthermore, for the maximum achiev-
able rate, the expected mean squared error of the recon-
struction error is bounded by E{kx ° x̂k2} ∑ 4§10°2 as seen
in Fig. 3. Proposed method outperforms both `1 and `2
decoding algorithms.

Secondly, we set the noise levels in equation (21) as
æG = 0 and kzIk`2 = 10 where zI is L = 5-sparse impulsive
noise. Fig. 4 shows that the proposed method in Section
3.2.2 achieves R ∑ 16/145 bit/measurement and Fig. 5
shows E{kx ° x̂k2} ∑ 6§10°2.

Finally, we set the noise levels in equation (21) as
æG = 0.001 and kzIk`2 = 10 where zI is L = 5-sparse im-
pulsive noise. Fig. 6 shows that the proposed method in
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Fig. 2. M vs. Prob(w 6= ŵ)
for æG = 0.001
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Fig. 3. M vs. E{kx ° x̂k2} for
æG = 0.001
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Fig. 4. M vs. Prob(w 6= ŵ)
for kzIk`2 = 10
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Fig. 5. M vs. E{kx ° x̂k2} for
kzIk`2 = 10

Section 3.2.2 achieves R ∑ 16/145 bit/measurement and
Fig. 7 shows E{kx ° x̂k2} ∑ 10°1.

In all three cases the proposed algorithms outperforms
classical `2 and `1 decoding methods in watermark extrac-
tion and signal recovery.
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Fig. 6. M vs. Prob(w 6= ŵ)
for kzIk`2 = 10, æG = 0.001
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Fig. 7. M vs. E{kx ° x̂k2} for
kzIk`2 = 10, æG = 0.001

5. CONCLUSION

This paper proposes a robust watermarking algorithm in
order to embed a dense message w onto CS samples Ax.
Two novel decoding methods are proposed; while first one
handles Gaussian noise, second one copes with sum of
Gaussian and impulsive noises. The proposed methods
outperform both classical `2 and `1 methods.
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