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ABSTRACT 

 

Several MIMO processing algorithms have been proposed 

that exploit long-term channel statistics, relaying on the 

critical assumption that this long-term information is valid 

long enough. In this paper, we consider the Correlation 

Matrix Distance (CMD) method previously proposed for the 

evaluation of MIMO channel non-stationarity. We highlight 

a couple of problems with the CMD measure and propose 

two new metrics that are more appropriate for non-

stationarity evaluation. The performance of the CMD 

method and new correlation matrix distance metrics is 

investigated using measured 4x4 MIMO channels. Both 

Line-of-Sight (LOS) and Non-LOS (NLOS) environments 

are considered. 

Index Terms— MIMO, Channel Non-Stationarity, 

Correlation Matrix Distance. 

 

1. INTRODUCTION 

 

Multiple-Input Multiple-Output (MIMO) technology is 

considered a key feature in the current wireless 

communication systems; e.g., long-term evolution (LTE) 

interface as well as the upcoming enhancement, LTE-

Advanced [1][2]. The optimum transmission performance of 

MIMO communication systems can be achieved if the 

instantaneous channel gains are known at both the 

transmitter and receiver. For mobile channels, where the 

channel gains are varying rapidly with time, the 

instantaneous channel knowledge cannot be obtained at the 

transmitter. Therefore, channel statistics are often used 

instead of the instantaneous values at the expense of some 

performance degradation [2]. 

Advanced MIMO transmission schemes such as eigen-

beamforming [3] and long-term adaptive pre-coding [4] are 

based on knowledge of the channel statistics. If the channel 

statistics are constant during some relatively large 

stationarity region (quasi-stationary), then these schemes 

can be successfully applied; otherwise, the receiver will not 

be able to feedback the correct channel statistical 

information to the transmitter. Therefore, it is very 

important to find a suitable method to estimate the 

stationarity regions of MIMO channels to see when these 

types of transmission schemes can be effectively employed. 

Unlike Single-Input Single-Output (SISO) channels, 

MIMO channels have higher dependency on the spatial 

conditions of the link such as the antenna positions and 

multipath reflections [5]. In mobile MIMO communications, 

the channel non-stationarity is mainly due to the changes of 

these properties when either transmit or receive antennas 

move from one place to another. In Non-Line-of-Sight 

(NLOS) environments where the multipath components are 

rich, it is important to examine the non-stationarity of 

different MIMO spatial structures to design a reliable 

MIMO system. 

The non-stationarity of SISO channels has been 

investigated in [6], where a Channel Correlation Function 

(CCF) was introduced to estimate the stationarity region of 

SISO channels. For the SIMO channels, where multiple 

antennas are employed at the receiver only, a stationarity 

measure has been introduced in [7].This measure, which is 

called F-eigen ratio, determines the similarity between the 

out-dated and new channel covariance matrices based on the 

largest F eigenvalues that can be selected depending on the 

transmission algorithm. 

The non-stationarity of MIMO channels has been 

investigated in [5], where the Correlation Matrix Distance 

(CMD) metric has been introduced to measure the 

dissimilarity between two MIMO channel covariance 

matrices that correspond to two different time instants based 

on their inner product. In [8][9][10], the CMD has been used 

to measure the non-stationarity of realistic radio channels. In 

[10], the CMD was also used to determine local quasi-

stationarity regions. In [11], the CMD was used to estimate 

the feedback interval for closed-loop MIMO systems which 

is useful to determine when the receiver needs to update 

channel information. Recently, the CMD has been proposed 

in [12] to evaluate the separation between multi-link MIMO 

channels. 

Due to its previously mentioned importance and wide 

spread use in the measurement of non-stationarity of MIMO 

channels, the CMD is considered in this paper. Specifically, 

we have the following three main contributions. 

 The CMD measure is first revisited, where we show 

that it is problematic to interpret the CMD for two 
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important transmission scenarios. The first scenario 

arises when MIMO spatial multiplexing is made under 

rich scattering environments, where the maximum 

number of eigenmodes (parallel data streams) is 

achieved. In this case, we show that the CMD will 

always underestimate the non-stationarity. The second 

scenario arises under poor scattering environments, 

where few eigenmodes are used in the transmission. 

Since the CMD evaluates the non-stationarity with 

respect to all eigenmodes, it does not provide a relevant 

measure of the non-stationarity leading to improper 

non-stationarity estimation. 

 New correlation metrics are then proposed to remedy 

the pitfalls of the CMD method. For the rich scattering 

environment scenario, we introduce a correction factor 

to the CMD to overcome the non-stationarity 

underestimation. This new correlation distance metric 

will be called the Normalized CMD (NCMD). For the 

second scenario, we introduce a new method that 

evaluates the non-stationarity based on the Distance 

between Equidimensional Subspaces (DES) algorithm 

presented in [13]. In the sequel, this new metric is 

termed the Correlation between Largest Eigenmodes 

(CLE) method. To the best of our knowledge, no 

attempts have been yet reported in the literature to 

consider the DES algorithm for MIMO channel non-

stationarity estimation. 

 The CMD, NCMD, and CLE methods are finally tested 

using measured MIMO channels in the context of 

estimating the non-stationarity and quasi-stationarity 

regions. 

 

2. SYSTEM MODEL 

 

Consider a MIMO system with nT transmit antennas and nR 

receive antennas. The linear time varying (LTV) MIMO 

channel is given by an nR × nT matrix, H(t, τ). For 

Orthogonal Frequency Division Multiplexing (OFDM) 

signals, the channel for each subcarrier will only be time 

selective. If s(t) is a vector representing the transmitted signal 

with nT antennas, then the nR ×1 received signal vector r(t) 

can be given as: 

)()()()( tttt nsHr     (1) 

where n(t) is an nR ×1 additive noise vector. Unfortunately, 

due to channel fading, feeding back  instantaneous channel 

gains to the transmitter under a time selective channel may 

require huge bandwidth to be practically useful. 

Alternatively, the channel in Eq. (1) can be modeled as a 

stationary stochastic process. Under the stationarity 

assumption, the statistics (i.e. the mean and covariance) of 

the channel matrix are constant and can be estimated at the 

receiver instead of the instantaneous channel values. 

However, if the MIMO channel is not stationary, then the 

channel statistics may also change very rapidly with respect 

to time and, hence, further investigation of the channel 

stationarity is needed to examine the feasibility of utilizing 

the channel statistics. 

 

3. STATIONARITY OF MIMO CHANNELS 

 

The stationary MIMO spatial correlation matrix RH is given 

by [5]: 

])}({vec)}({vec[ H
H ttE HHR      (2) 

where E[.] is the expectation operation and vec{H(t)}is the 

vectorization operation of a matrix. Since vec{H(t)} has nR 

nT elements, RH will be of size nR nT × nR nT. The size of RH 

might become very large as it increases rapidly with respect 

to the number of antennas at the transmit or receive side. The 

so-called Kronecker model both reduces the number of 

parameters and allows for more tractable analysis. 

The Kronecker MIMO channel model has the following 

form for channel correlation matrix [14]. 

RxTx
Rx

H
tr

RR
R

R 
}{

1  

where   is the Kronecker product, RTx and RRx are the nT × 

nT transmit and nR × nR receive correlation matrices, 

respectively. These matrices are defined as follows. 

)]()([ ttE T
Tx

*HHR   and )]()([ ttE H
Tx HHR   

The major disadvantage of this simplified model is the low 

accuracy in describing a real MIMO channel, particularly if 

the number of antennas increases. However, this model is 

sufficient for non-stationarity evaluation [15]. 

For a non-stationary MIMO channel, the correlation 

function described in Eq. (2) is time dependent. Hence, it 

takes the form RH(t). If we assume that the spatial correlation 

matrix RH(t) does not change (i.e. the channel is stationary) 

within some small averaging time interval Tv, then RH (t) can 

be rewritten in a discrete-time function as follows [5][16], 

])}({vec)}({vec[)( H
tH ttEn HHR  for ])1(,[ vv TnnTt   

The spatial stationarity region of a non-stationary 

MIMO channel H(t) can be defined as the region (time or 

distance in meters for moving subjects) at which the 

correlation matrix described by RH (n) stays relatively 

constant. That is, 

)()( 21 nn HH RR    for 
sv TTnn  21
 

RH(n1) and RH(n2) are correlation matrices that correspond to 

two different regions. For non-stationarity measurement, we 

need a matrix metric denoted by M(RH(n1), RH(n2)), that 

compares RH(n1) and RH(n2) and produces a value that 

measures the dissimilarity between these two matrices. It is 

desirable that M(RH(n1), RH(n2)) has a value that ranges from 

zero to one, where the later means totally different matrices. 

 

4. DISSIMILARITY METRICS 

 

In this section, we introduce the CMD method and show its 

pitfalls in measuring the variation in the MIMO spatial 

correlation matrix. Then, we propose two remedies for these 

pitfalls; the NCMD and CLE methods. 
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4.1. Correlation Matrix Distance (CMD) 

 

The CMD method proposed in [5] measures the dissimilarity 

between two correlation matrices using inner product 

operation. That is, if R(k) and R(l) are two different matrices 

of size (n×n), then the CMD is defined as 

FF
lk

lk
lkCMD

)()(

)}()({tr
1))(),((

RR

RR
RR                   (3) 

where‖∙‖F is the Frobenius norm. The CMD can range 

from zero to one. If the vectorization of the two matrices are 

orthogonal, the inner product will be zero and the CMD will 

have the value of one, indicating that the two matrices are 

totally different. On the other hand, if the vectorization of the 

two matrices are parallel, the normalized inner product will 

be one so the CMD will be zero, indicating that the two 

matrices are equal. However, the CMD method is always 

below one for full rank correlation matrices (even if the two 

matrices are as different as they possibly can be). Also it 

considers all eigenmodes even if only a few are used in the 

transmission. Therefore, it is the objective of the next two 

subsections to present two new metrics, the first of which 

(NCMD) achieves one when the distance between two full 

rank Hermitian positive semi-definite matrices is at the 

maximum value possible. The second metric (DES) is 

formulated so that it only makes use of dominant 

eigenmodes considered for transmission in poor scattering 

environments. 

 

4.2. Normalized Correlation Matrix Distance (NCMD) 

 

In rich scattering environments, the channel correlation 

matrix RH(t) is full rank, and all eigenvalues of RH (t) are 

larger than zero. Since the correlation matrix RH (t) is always 

positive semi-definite Hermitian matrix, the maximum 

possible CMD value for full rank correlation matrices is less 

than one, as will be shown below. In this case, we propose to 

adjust the CMD metric by a normalization factor so that the 

maximum value of dissimilarity between two correlation 

matrices can achieve one. 

Let R(k) be a given n×n correlation matrix and R(l) be an 

arbitrary correlation matrix. The maximum possible value of 

the CMD is then  

FF

l

l

lk

lk

lkCMD

F

F

)()(

)}()({tr
1max

))(),((max

0)(

0)(

RR

RR

RR

R

R

 



    (4) 

where the worst case R(l) equivalently can be found from  

)}()({trmin
1)(

lk

F
l

RR
R 

 

Introducing the eigenvalue decomposition 
Hkk UUΛR )()(  , with the eigenvalues sorted in decreasing 

order, we obtain 

 


n

i
iii

l

H lklklk
1

)(
~

)(
~

)(})()({tr)}()({tr RURUΛRR

R




 

which clearly is minimized by setting all elements of )(
~

lR to 

zero, except the lower right corner element which is set to 

one.  

Inserting this solution back in Eq. (4) gives that the 

maximum value of the CMD takes the form: 

 







n

i
i

n

F

n
l

k

k

k

k
lkCMD

F

1

2

0)(

)(

)(
1

)(

)(
1))(),((max







R
RR

R

 

For instance, if R(k) has equal eigenvalues then the 

maximum CMD value would be (1─1/ n ). We therefore 

propose a new metric1 called the Normalized CMD 

(NCMD), which is defined as  

K

lkCMD

k

k

lkCMD
lkNCMD

n

i i

n

))(),((

)(

)(
1

))(),((
))(),((

1

2

RR

RR
RR







 



  (5) 

where K is a normalization factor. If the smallest eigenvalue 

of R(k) is zero, then the normalization factor will be one, and 

hence the NCMD will be identical to the CMD. On the other 

hand, if R(k) has equal eigenvalues, then the minimum value 

of K is achieved, and the NCMD value would be one which 

is 1/(1─1/ n ) times the CMD value. 

 

4.3. Correlation between Largest Eigen Modes (CLE) 

 

In weak scattering environments, where the correlation 

matrix is low rank, only few eigenvalues are large enough to 

be used in the transmission. In case of low SNR, only the 

strongest eigenvectors are useful when transmitting data. 

Therefore, we are interested in measuring the non-

stationarity of the channel with respect to the used 

eigenvalues. In this method, we extract the eigenvectors of 

the two correlation matrices and take only the first k 

eigenvectors that correspond to the largest eigenvalues. To 

illustrate this, let R(p) and R(q) be two correlation matrices 

to be compared. Accordingly, R(p) can be written as 

 


n

1i

H
iii pppp )()()()( uuR   

where λi (p) and ui (p) are the ith largest eigenvalue and 

eigenvector of R(p), respectively. We define Uk(p), k < n, as 

)]()()([)( 21 pppp kk uuuU   

Uk(p) and Uk(q) are then compared using the DES method 

presented in [13, Sect. 2.6.3]. The value of k can be chosen 

depending on the transmission scenario. 

 

 

                                                 
1 Strictly speaking, this is not a metric, since it is asymmetric in the two 

arguments. However, this asymmetry corresponds to the intended 
application, where a possibly outdated covariance matrix is used. 
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5. MEASUREMENTS AND DATA PROCESSING 

 

In this section, we consider real 4x4 MIMO channels 

measured by Ericsson AB for the purpose of LTE systems 

studies. The measurements that include LOS and NLOS 

routes were performed in Kista, a suburb of Stockholm city 

in Sweden by installing 4 receive antennas on a moving car. 

Table 1 summarizes the measurements parameters.  

The channel correlation matrix is assumed to be 

stationary within 10 λc =1.15 meters. Therefore, the 

averaging time Tv is calculated to be 10 λc / Sv = 188.2 ms, 

where Sv is the average speed of the car. Moreover, the 

spatial structure is assumed to be stationary within the entire 

channel bandwidth since the bandwidth of the channel is 

much smaller than the center frequency. In [17], it is shown 

that these choices satisfy the Doubly Underspread (DU) 

condition i.e. the number of independent fading realizations 

is sufficiently large [6]. The discrete correlation matrix at 

the transmit side RTX(n) can be estimated as:  


f t

N

m

N

n

*T

tf

TX nmnm
NN

k ),(),(
11

)( HHR  

Where H(m, n) is the sampled version of the time-frequency 

channel H(t, f), Nf are Nt are the number of frequency 

samples, the number of time samples, respectively.  

 
Table 1. Measurements Parameters 

Location Kista, Stockholm, Sweden 

Scenario Suburban, Driving car 

Transmit antennas 4 antennas , at base station 

Receive  antennas 4 antennas, at moving car 

Center frequency fc 2.6 GHz 

Wavelength  0.115 m 

Bandwidth B 20 MHz 

Frequency sample spacing  123 KHz 

Number of frequency samples Nf  162 

Time sample spacing Tp 5.33 ms 

Average receiver speed Sv 22 Km/hr 

 

5.1. Spatial stationary MIMO channel 

 

In this section, we illustrate the performance of the 

dissimilarity metrics for three seconds measurement while 

the car was non-moving. This is to ensure proper 

functionality of the dissimilarity metric functions. Fig. 1(a) 

shows the dissimilarity metrics values of the transmit 

correlation matrix with respect to the first instant RTx (t=0). 

Here, the CLE method is used with a rank k=1. Apparently 

from Fig. 1a, all the dissimilarity metrics stay below 0.08 

which gives an indication of spatial stationarity. 

 

5.2. LOS MIMO channel non-stationarity 

 

Initially, the dissimilarity metrics for the starting point of 

LOS route were evaluated using the estimated correlation 

matrix RTx as a function of distance, d. Fig. 1(b) shows the 

variation of the dissimilarity metrics with travel distance 

when comparing RTx(0) with the entire route. 

 

 

 

 

 

 
(a)                                                     (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As clearly observed from Fig. 1b, the NCMD method 

performance is very close to CMD method. In fact, the 

normalization factor was very close to one (0.99 for RTx (0)) 

due to the large ratio between the maximum and minimum 

eigenvalues of the correlation matrix. However, the CLE 

with respect to the first eigenmode (k=1) appears to be more 

sensitive to the spatial variations, which is relevant in this 

case since the remaining eigenmodes were found to be 

relatively very small. 

 

5.3. NLOS MIMO channel non-stationarity 

 

Fig. 2 shows the variation of the CMD and NCMD with 

distance of the NLOS channel when RTx (0) is compared 

with the entire route. Here, the difference between the CMD 

and NCMD is relatively large compared to the LOS case (the 

normalization factor is 0.66; that is, the CMD underestimates 

the non-stationarity by 34%). 

For NLOS environments, the channel changes rapidly with 

distance and shows higher rank compared to the  LOS 

environments. In this case, the CLE method could be applied 

Figure 1: CMD, NCMD and CLE of (a) spatial stationary channel with 
respect to RTX (t = 0), (b) of the LOS route with respect to RTX (d = 0). 

.  

Figure 2: CMD and NCMD of the NLOS route with respect to RTX (d = 0). 

Figure 3: NCMD and CLE with k = 1, 2 and 3 of the NLOS route with 

respect to RTX (d = 0). 
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with rank k=1, 2, or 3 depending on the number of utilized 

eigenmodes. The performance of the CLE method with 

different ranks at the transmit side is shown in Fig. 3. In this 

figure, it can be seen that different rank produces different 

metric values depending on the employed MIMO 

transmission scenario. 

 

5.4. MIMO channel stationarity distance 

 

The local stationarity distance can be defined as the distance 

at which the dissimilarity metric is lower than a certain 

threshold value c as defined in [16]. For example, the 

CLE(RTx(0), RTx(d)) of the LOS route shown in Fig. 1b 

crosses the threshold c=0.2 at around 10 meters. This means 

that the stationarity distance is 10 meters with respect to d=0.   

The average stationarity distance of the LOS and NLOS 

channels (for c=0.2 and d = 0 to 140m) is shown in Table 2. 

For the LOS route, if only the largest eigenmode is used, 

both the CMD and the NCMD indicate higher average 

stationarity distance compared to the CLE with k=1. When 

the NLOS route is considered, the CMD indicates higher 

average stationarity distance compared  to the NCMD 

method. If only few eigenmodes are used (k=1, 2 or 3) the 

CLE metric becomes more appropriate. However, for full 

spatial multiplexing scenario in NLOS channel where all the 

eigenmodes are often close to each other and the channel is 

of high rank, the NCMD metric will be the appropriate 

choice. 

 
Table 2. Average stationarity distance 

Dissimilarity Metric Av. St. Dis. LOS Av. St. Dis. NLOS 

CMD 115 m 120 m 

NCMD 115 m 82 m 

CLE (k=1) 9 m 0.63 m 

CLE (k=2) - 4 m 

CLE (k=3) - 0.5 m 

 

6. CONCLUSION 

 

This paper has considered the CMD method and proposed 

new metrics for proper evaluation of non-stationarity of 

MIMO channels. The new metrics include the NCMD and 

CLE, each of which is well-suited for a specific transmission 

scheme/scenario.  

Based on the results obtained from the measured MIMO 

channels, the CMD method give higher estimation to the 

stationarity regions compared to the NCMD particularly 

under the NLOS routes. For poor scattering environments, 

the CLE metric can be used to evaluate the non-stationarity 

with respect to the employed eigenmodes. The CLE metric 

will be more relevant in this case. 
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