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ABSTRACT

This paper proposes a new adaptive Constant Modulus Al-
gorithm (CMA) for the blind separation of communication
signals. Although many existing CMA-like algorithms have
been proposed in the literature, their efficiency in terms of
convergence rate and separation quality is still relatively low.
We introduce herein a new adaptive technique based on the
use of complex Hyperbolic Givens rotations which shows
very good performance as illustrated by the simulation results
and comparative study provided at the end of the paper.

Index Terms— Constant Modulus Algorithm (CMA),
Adaptive CMA, Hyperbolic Givens Rotations.

1. INTRODUCTION

The Constant Modulus Algorithm is one of the most efficient
techniques for blind equalization or blind separation of com-
munications signals. A plethora of CMA-like methods and
algorithms have been proposed so far in the literature, e.g.
[3, 4, 10, 11] for the blind equalization and [5, 7, 8, 9] for the
blind source separation, to improve and extend the original
version introduced more than three decades ago [1, 2]. In par-
ticular, many adaptive algorithms have been proposed for the
minimization of the non-linear Constant Modulus (CM) cost
function. Among the most efficient implementations one can
cite the LS-CMA algorithm in [6, 8] and the adaptive Analyt-
ical CMA (ACMA) in [9].

Here, we consider another type of adaptive implementa-
tions using sliding window and Hyperbolic Givens (HG) ro-
tations. The proposed algorithm has the advantage of fast
convergence and good separation quality for a moderate com-
putational cost comparable to that of the methods in [6, 8,
9]. The first part of the paper is dedicated to the algorithm’s
development while the second part is for the simulation re-
sults and comparative study with the LS-CMA and adaptive
ACMA methods.

2. PROBLEM FORMULATION

In the context of Multi-user MIMO communications system,
the instantaneous mixture xk of d transmitted sources sk re-

ceived through an M -antenna array is modelled as follows:

xk = Ask + nk. (1)

were A is the M × d mixing matrix and the M -dimensional
vector nk is an additive noise of covariance σ2

nI . By stacking
K samples of the received data in one matrix X, the model
(1) becomes:

X = AS+N (2)

where X = [x1 : xK ], S = [s1 : sK ] and N = [n1 : nK ].
Blind Source Separation aims to recover the unknown

sources from observed mixtures, relying only on some as-
sumptions on the statistical properties of the original sources
1. This is equivalent to find a d ×M separation matrix W
which output is the estimated source vector (up to scaling and
permutation ambiguities [17]):

Z = WX = Ŝ. (3)

In the sequel, we’ll consider the square case where M = d
(one can use signal subspace projection in the non square case
where M > d as in [9]).

3. HYPERBOLIC-GIVENS CONSTANT MODULUS
ALGORITHM HG-CMA

Originally, the CMA in [1, 2] was designed in such a way it
exploits the fact that the original sources are generated from
a finite alphabet having a constant modulus2 R and try to re-
store this property by minimizing the deviation of the restored
signals modulus from this constant leading to the following
Constant Modulus Criterion (CMC):

J (W) =

M∑
i=1

K∑
j=1

(
|zij |2 −R

)2
(4)

1Standard hypotheses consist of assuming that: (i) The mixing matrix A
is a tall full column rank matrix (M ≥ d), (ii) The original sources are mutu-
ally independent, (iii) The additive noise is white, Gaussian, and independent
from the source signals.

2Later on, it is shown that the CMA can be applied for any sub-Gaussian
sources [16]. Also, because of the scaling ambiguity, one can chose R = 1,
without loss of generality.
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where zij is the (i, j)th entry of the output matrix Z. The
minimization of (4) leads to a large number of algorithms
belonging to the CMA class. In particular, the authors in
[12] proposed a two-step iterative Jacobi-like algorithm for
the minimization of the CMC (or the 4− th order cumulants
in [13]) after data pre-whitening. Adaptive implementation
of such two-steps method results, in general, in algorithms of
relatively slow convergence rates, e.g. [13]. In [14], a one
step joint diagonalization algorithm is proposed by decom-
posing the separation matrix W as a product of hyperbolic
Givens rotations. We propose here to exploit this matrix de-
composition in our context for an adaptive optimization of the
CMC.

In other words, at time instant t, the current estimate of
the separation matrix W(t−1) is updated as:

W(t) = D(pq)(λp, λq)G
(pq)(θ, α)H(pq)(φ, β)W(t−1)

(5)
where:

• H(pq)(φ, β) is the complex non-unitary hyperbolic
matrix with diagonal elements equal to one except
for the two elements hpp = hqq = cosh(φ) and its
off-diagonal elements are null except the elements
hpq = h∗qp = eiβ sinh(φ).

• G(pq)(θ, α) is the complex unitary Givens matrix with
diagonal elements equal to one except for the two el-
ements gpp = gqq = cos(θ) and its off-diagonal ele-
ments are null except for the elements gpq = −g∗qp =

eiα sin(θ).

• D(pq)(λp, λq) is a normalization diagonal matrix with
diagonal elements equal to one except for the two ele-
ments dpp = λp, and dqq = λq .

Next, for given rotation indices (p, q), we show how the
parameters θ, α, φ, β, λp and λq are optimized to minimize
the CMC.

3.1. Complex Non-Unitary Hyperbolic Rotations

The first stage of the algorithm consists of applying the non-
unitary hyperbolic transformation to the received bloc of
data3

Z = H(pq)(φ, β)X (6)

The couple of hyperbolic angles (φ, β) is calculated so
that it minimizes the CMC in (4). In fact, this transformation
affects only the rows of index p and q of the data bloc X.

It can be shown that, in this case, the CMC can be decom-
posed into two parts; one of them is a function of (φ, β) and
the second is independent of these two parameters (referred
to as ’constant’):

3For the sake of simplicity, we use notations X for the input data, u for
the parameter vector and Z for the output data, whatever the considered input
and matrix transformation are.

JH(φ, β) = 2
(
uTQsu− 2RuT rs

)
+ constant (7)

where:

• u = [cosh(2φ), sinh(2φ) cos(β), sinh(2φ) sin(β)]
T ,

• Qs =
∑K
j=1 r

(j)r(j) T and rs =
∑K
j=1 r

(j),

• r(j) =
[
1
2

(
|xpj |2 + |xqj |2

)
, R(xpj x∗qj), I(xpj x∗qj)

]T
,

• xij is the (i, j)th entry of matrix X.

R(.) and I(.) being the real and imaginary parts of a complex
number.

Considering the particular structure of vector u, the mini-
mization of (7) is equivalent to the following constrained op-
timization problem:

min
u

{
uTQsu− 2R uT rs

}
, s.t. uTJ3u = 1 (8)

where the diagonal matrix J3 = diag ([1,−1, − 1]) is used
to express the particular structure of vector u.

The exact solution of (8) can be obtained using Lagrange
multipliers as shown in [15]. However, a simpler approximate
solution4 can be obtained by considering the first order Taylor
expansion of the hyperbolic functions around zero leading to
(calculation details are omitted due to space limitation):

β = atan
(∑K

j=1 r
(j)
3 (r

(j)
1 −1)∑K

j=1 r
(j)
2 (r

(j)
1 −1)

)
φ = 1

2atanh

( ∑K
j=1

(
cos(β)r

(j)
2 +sin(β)r

(j)
3

)(
1−r(j)1

)
∑K

j=1

(
cos(β)r

(j)
2 +sin(β)r

(j)
3

)2
+
(
r
(j)
2 −r(j)1

)
) (9)

where r(j)i refers to the i-th entry of vector r(j).

3.2. Complex Unitary Givens Rotations

The second step of the algorithm consists of applying the uni-
tary Givens transformation to the considered data bloc:

Z = G(pq)(θ, α)X (10)

Like for the hyperbolic transformation, the Givens rotation
affects only the rows of index p and q of X . Again, the CMC
in (4) can be decomposed into two parts; one of them is a
function of (θ, α) and the second is independent of these two
parameters:

JG(θ, α) = 2
(
uTQgu

)
+ constant (11)

where:
4This solution has been chosen since it allows us to reduce the computa-

tional cost but also because we observed in our simulation experiments that
it leads to almost the same algorithm’s performance as if we use the exact
solution of (8).
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• u = [cos(2θ), sin(2θ)cos(α), sin(2θ)sin(α)]
T ,

• Qg =
∑K
j=1 r

(j)r(j) T ,

• r(j) =
[
1
2

(
|xpj |2 − |xqj |2

)
, R(xpjx∗qj), I(xpjx∗qj)

]T
,

Hence, the optimal couple of angles (θ, α) that minimizes
the quadratic form in (11) under the constraint uTu = 1 is
given by: cos(θ) =

√
(u1 + 1)/2

eiα sin(θ) = (u2 + iu3) /
√
2(u1 + 1)

(12)

where u = [u1, u2, u3]
T is the least eigenvector of Qg asso-

ciated to its smallest eigenvalue5.

3.3. Normalization Rotations

It has been shown in the two previous subsection that both
Givens and hyperbolic transformations affect only the rows
of index p and q of the data bloc X. The last algorithm’s
transform is a normalization step according to

Z = D(pq)(λp, λq)X (13)

The optimal parameters (λp, λq) are calculated so that
they minimize the CMC which is expressed, in this case, as
(constant terms are omitted):

JD(λp, λq) =
∑K
j=1(λ

4
p |xpj |

4 − 2Rλ2p |xpj |
2
)

+
∑K
j=1(λ

4
q |xqj |

4 − 2Rλ2q |xqj |
2
)

(14)

Optimal normalization parameters can be obtained at the
zeros of the derivatives of (14) with respect to these two pa-
rameters:

λp =
√
R
∑K
j=1 |xpj |

2
/
∑K
j=1 |xpj |

4

λq =
√
R
∑K
j=1 |xqj |

2
/
∑K
j=1 |xqj |

4

(15)

3.4. Adaptive Implementation of HG-CMA

To make an adaptive version of this algorithm, let us consider
a sliding bloc X(t−1) = [xt−K , ...,xt−2,xt−1] which is up-
dated at the acquisition of a new sample xt (at time instant t)
to be X(t) = [xt−K+1, ...,xt−1,xt].

The main idea of the adaptive HG-CMA is to apply one
sweep of complex rotations on the sliding window at each
time instant and update the separation matrix W by this
sweep of rotations. The resulting algorithm is summarized in
Table 1 (for simplicity, we use the same notation for the data
and its transformed version).

5We have here a 3× 3 eigenvalue problem that can be solved explicitly.

Initialization: W(K) = Id.
For t = K + 1,K + 2, ... do

xt = W(t−1)xt
X(t) = [xt−K , ..., xt−1, xt]
W(t) = W(t−1)

For all 1 ≤ p < q ≤ d do
Compute H(pq) using (9)
Compute G(pq) using (12)
Update W(t) = G(pq)H(pq)W(t)

Update X(t) = G(pq)H(pq)X(t)

end For
For 1 ≤ p ≤ d, compute λp using (15) end For
Compute D = diag([λ1, · · · , λd])
Normalize W(t) = DW(t) and X(t) = DX(t)

end For

Table 1. Adaptive HG-CMA Algorithm.

Note that, the normalization step is done outside the
sweep loop which reduces slightly the numerical cost.

The numerical cost of the HG-CMA is of order O(d2K)
(assuming K > d) but can be reduced to O(dK) flops per
iteration if we use only one or two rotations per time instant.
In the simulation experiments, we compare the perfomance of
the algorithm in the 3 following cases:

• When we use one complete sweep (i.e. d(d − 1)/2
rotations)

• When we use one single rotation which indices are cho-
sen according to an automatic selection (i.e. automatic
incrementation) throughout the iterations in such a way
all search directions (i.e all indices values) are visited
periodically.

• When we use 2 rotations per iteration (time instant):
one pair of indices is selected according to the maxi-
mum deviation criterion:

(p, q) = argmax

K∑
k=1

(|xpk|2 −R)2 + (|xqk|2 −R)2

while the other rotation indices are selected using the
previous automatic selection procedure.

Comparatively, the adaptive ACMA [9] costs approximately
O(d3) flops per iteration and the LS-CMA6 costs O(d2K +
d3). Interestingly, as shown in section 4, the sliding window
length K can be chosen of the same order as the number
of sources d without affecting much the algorithm’s perfor-
mance. In that case, the numerical cost of HG-CMA becomes
similar to that of the adaptive ACMA.

6We consider here an adaptive version of the LS-CMA using the same
sliding window as for our algorithm.
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4. SIMULATION RESULTS

To assess the performance of the HG-CMA, we consider here
a 5×5 MIMO system (i.e. d = 5). The inputs are i.i.d 4-PSK
modulated sequences and the system matrix A is generated
randomly at each Monte Carlo run but with controlled condi-
tioning (its entries are generated as i.i.d. Gaussian variables).
Unless stated otherwise, the processing window size is set to
K = 2d.

The separation quality is measured by the Signal to In-
terference and Noise Ratio (SINR) averaged over 200 Monte
Carlo runs.

In figure 1, we compare the convergence rates and separa-
tion quality of HG-CMA (with different number of rotations
per time instant), LS-CMA and adaptive ACMA. One can ob-
serve that HG-CMA outperforms the two other algorithms in
this simulation context. Also, one can see that even with 2
rotations per time instant, our algorithm leads to high separa-
tion quality with fast convergence rate (typically, few tens of
iterations are sufficient to reach the steady state level).

In figure 2, the plots represent the steady state SINR (ob-
tained after 1000 iterations) versus the SNR. One can see that
the HG-CMA has no saturation effect (as for the LS-CMA
and adaptive ACMA) and its SINR increases almost linearly
with the SNR in dB.

In figure 3, the SNR is set to 20dB and the plots repre-
sent again the steady state SINR versus the number of sources
d. Severe performance degradation is observed (when the
number of sources increases) for the LS-CMA and adaptive
ACMA while the HG-CMA performance seems to be unaf-
fected when the source number increases.

In figure 4, the plots illustrate the algorithms performance
versus the chosen processing window size7 K. Surprisingly,
HG-CMA algorithm reaches its optimal performance with
relatively short window sizes (K can be chosen of the same
order as d).

In the last experiment, we consider 8-QAM sources (with
non constant modulus property). In that case, all algorithms
performance are degraded but HG-CMA still outperforms the
two other algorithms.

To improve the performance in the non constant modulus
signal case, one needs to increase the processing window size
as illustrated by this simulation result but more importantly,
one needs to use more elaborated cost functions which com-
bines the CMC with alphabet matching criteria e.g. [10, 11].

5. CONCLUSION

A new adaptive constant modulus algorithm has been intro-
duced using sliding window and hyperbolic Givens rotation.
The proposed algorithm is of moderate complexity but has
the advantage of fast convergence rate and high separation

7This concerns only LS-CMA and HG-CMA as the adaptive ACMA in
[9] uses an exponential window with parameter β = 0.995.

Fig. 1. SINR vs.Time Index: SNR = 20dB, d = 5,K = 10.

Fig. 2. SINR vs. SNR: d = 5, K = 10.

quality. The simulation results illustrate its effectiveness as
compared to the adaptive implementations of ACMA and LS-
CMA. They show, in particular, that the sliding window size
can be chosen as small as twice the number of sources without
significant performance loss. Also, they illustrate the trade off
between the convergence rate and the algorithm’s numerical
cost as a function of the number of used rotations per itera-
tion. The proposed iterative technique can be adapted for the
optimization of more elaborated cost functions which com-
bine the CMC with alphabet matching criteria, e.g. [10, 11].
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