
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

OPTIMAL OFDM PULSE DESIGN, ANALYSIS AND IMPLEMENTATION OVER DOUBLY
DISPERSIVE CHANNEL

Raouia Ayadi(1), Inès Kammoun(2), Mohamed Siala(1)

(1) Sup’com, ElGhazala, 2083, Ariana-Tunisia
(2) LETI Department, ENIS, BPW 3038 Sfax - Tunisia

Email: raouia.ayadi@supcom.rnu.tn, ines.kammoun@isecs.rnu.tn, mohamed.siala@supcom.rnu.tn

ABSTRACT

This paper considers optimization and implementation of the
pulse shape for Orthogonal Frequency Division Multiplexing
(OFDM) systems over doubly dispersive channel. The pro-
posed pulse shape is expressed as a linear combination of the
most localized Hermite waveforms. In our previous works,
we have proposed pulses optimization based on an exact ex-
pression of the Signal to Interference Ratio (SIR). In order
to accelerate the optimization procedure, we propose an ap-
proximate expression of the SIR using Taylor series of inter-
ference and desired signal mean powers. For a performance
evaluation of the optimized OFDM system, we propose an ef-
ficient implementation of both the modulator and the demod-
ulator of the system and an efficient method to find out the
resulting simulated SIR. Simulations results, obtained for dif-
ferent values of the dispersion factor, show that the SIR com-
puted through system level simulation matches the maximum
achievable SIR obtained through numerical optimization.

Index Terms— OFDM, Hermite waveforms, exact SIR,
approximate SIR, simulated SIR.

1. INTRODUCTION

The conventional OFDM system uses the rectangular filter to
maintain maximum spectral efficiency. However, this filter
is bad frequency localized and leads to Inter-Carrier Interfer-
ence (ICI) over time-selective channels. The design of time-
frequency well localized pulses for OFDM systems is an at-
tractive research topic [1–5]. In [1], the prototype pulse of
the maximizing Signal to Interference plus Noise Ratio re-
ceiver is proposed for Hexagonal Multicarrier Transmission
over doubly dispersive channel. Jung et al., in [2], presented
a new method for the transmit/receive pulses design by ap-
plying mathematical results on Weyl-Heisenberg frames to
the multicarrier context. In [3], Haas and Belfiore proposed
to use the Hermite waveforms for OFDM systems. These
functions form an orthonormal base and present a good time-
frequency localization. In [4], we optimized the pulse shape
for OFDM systems in order to reduce Inter-Symbol Interfer-
ence (ISI) and ICI over time-frequency dispersive channels.

In [5], the optimization of the transmit and receive pulses is
carried out for BFDM systems. For OFDM and BFDM sys-
tems, the optimal pulses are expressed as linear combinations
of the most localized Hermite Waveforms. In [4] and [5], the
optimization of the pulse shapes is based on the exact expres-
sion of the SIR.
In order to accelerate the optimization procedure, we propose,
in this paper, an approximation of the SIR using taylor series,
truncated at the second order, of both interference and desired
signal mean powers. Thereafter, we propose pulse shape op-
timization for OFDM system with the obtained approximate
expression of the SIR for different values of the dispersion
factors. Another aim of this paper is to provide an efficient
implementation and a realistic performance. of the optimized
OFDM system. For this aim, we simulate the multicarrier
transmission system. At first, we propose an efficient im-
plementation, using the Fast Fourier Transform (FFT), of the
modulator and the demodulator in OFDM systems. There-
after, we propose a new method to determine the mean power
of the interference and that of the desired signal to find out
the value of the simulated SIR.
This paper is organized as follows. In section II, we introduce
the system model. Section III provides an approximation of
the SIR and the optimization of the pulse shape based on max-
imizing the approximate SIR. We describe our simplified ap-
proach to implement the modulator and the demodulator in
section IV. In section V, we present our method for the sim-
ulated SIR derivation. Section VI is devoted to simulation
results. The conclusion is given in section VII.

2. SYSTEM MODEL

Transmitter and receiver models. We consider a baseband
model of an OFDM system with K sub-carriers regularly
spaced by F in frequency. In practice, the value of K is a
finite number but great enough to be considered next as an
infinite number for simplicity reason. In this case, the trans-
mitted signal is expressed by

s(t) =
∑
mn

amnϕmn(t). (1)
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Here, amn, m,n ∈ Z, denote the i.i.d transmitted symbol
of zero mean and mean transmitted energy E. The symbol
amn is transmitted at time mT using sub-carrier nF , where
T denotes the OFDM symbol duration.
The elementary signals ϕmn(t) are defined by

ϕmn(t) = ϕ(t−mT )ej2πnFt, (2)

where ϕ(t) is an elementary pulse that must guarantee quasi-
orthogonality with its neighboring time-frequency shifted
versions to avoid ICI and ISI and a good time-frequency
localization to preserve the quasi-orthogonality with distant
functions even over dispersive channels.
While crossing a time varying channel H with AWGN, the
received signal r(t) can be expressed as

r(t) = (Hs)(t) =

∫ +∞

−∞
s(t− τ)h(τ, t)dτ + b(t), (3)

where h(τ, t) is the impulse response of the channel at time
t and b(t) is the additive white Gaussian noise with power
spectral density σ2

b . The decision variable

âmn =< ϕ(t), r(t) >=

∫ +∞

−∞
r(t)ϕ∗mn(t)dt, (4)

on the transmitted symbol amn is obtained by projecting the
received signal r(t) on the base of elementary signalsϕmn(t).
Channel model. The channel H is assumed to satisfy the
Wide-Sense Stationary Uncorrelated Scattering proprety. We
assume that it is characterized by a Doppler power spectrum
density obeying to the Jake’s model and an exponentially de-
creasing Power Delay Profile (PDP). Adopting the symmetry
of the 2-D isotropic scattering environment, the impulse re-
sponse for a single path, according to Jake’s model, is written
in the following form [6]

h(t) =

√
8

N1

N1/4−1∑
k=0

ck exp(jφk) cos(2πνkt+ ςk), (5)

where νk = fd cos(θk), φk = (ωk + ωK−k−1)/2 and ςk =
(ωk − ωK−k−1)/2 are uniformly distributed on [−π, π]. We
note that φk and ςk are independent. We note also ck, θk =
π
N1

+k 2π
N1

and ωk are respectively the complex Gaussian ran-
dom gain, the angle and the random initial phase of the kth

incoming wave at the mobile.
Without loss of generality, we consider a channel of unit av-
erage power. Thus, the scattering function of the doubly dis-
persive channel is given by

SH(τ, ν) =
2

πBdTm

exp(−τ/Tm)√
1− (2ν/Bd)2

, (6)

where Tm andBd = 2fD are respectively the delay root mean
square and maximum Doppler spreads. Notice that τ≥0 and
−Bd/2 < ν < Bd/2 are respectively the delay and Doppler
spreads introduced by the channel.

3. OPTIMIZATION OF THE PULSE SHAPE BASED
ON THE SIR APPROXIMATE EXPRESSION

As in [4], we express the OFDM pulses as linear combina-
tions of the most localized Hermite Waveforms as follows

ϕ(t) =
1√∑N−1

k=0 |α2k|2

N−1∑
k=0

α2ku2k(t), (7)

whereN is a finite integer fixing the number of most localized
combined Hermite waveforms.
In [4], our approach of optimization consisted in maximizing
the exact expression of the SIR

ϕopt(t) = max
ϕ(t)

SIR, (8)

where the exact SIR is expressed by [4]

SIR =
σ2
D

σ2
I

=
E.

∫∫
|Aϕ(τ,ν)|2SH(τ,ν)dτdν

E.
∫∫

Γϕ(τ,ν)SH(τ,ν)dτdν

=

∑
0≤k,l,k′,l′≤N−1

α2kα
∗
2lα
∗
2k′α2l′S(k,l,k′,l′)∑

0≤k,l,k′,l′≤N−1

α2kα∗2lα
∗
2k′α2l′ I(k,l,k′,l′)

,
(9)

with S(k, l, k′, l′) =
∫ ∫

A2k,2l(τ, ν)A
∗
2k′,2l′(τ, ν)SH(τ, ν)dτdν,

I(k, l, k′, l′) =
∫ ∫

Γ2k,2l(τ, ν)SH(τ, ν)dτdν, Γϕ(τ, ν) =∑
(m,n)6=(0,0) |Aϕ(τ +mT, ν + nF )|2 and Aϕ(τ, ν) denotes

the ambiguity function that measures the autocorrelation be-
tween two successive shifts of ϕ(t) in time of τ and in fre-
quency of ν.
The maximisation of the exact SIR, in [4], is based on the
Arrow-Hurwicz Algorithm which employs a Lagrangian dual
function to find out the optimal coefficients of the pulse shape
in the Hermite orthonormal base. In oder to accelerate the
optimization procedure, we undertake the pulse shape opti-
mization with an approximate expression of the SIR, instead
of the exact one.

3.1. Approximation of the SIR

Now, we derive an approximate expression of the SIR as a
function of the delay spread and of the Doppler shift using
taylor series, truncated at the second order, of both interfer-
ence and desired signal mean powers. Using the second-order
taylor series, we can approximate |Aϕ(x, y)|2 as follows

|Aϕ(x, y)|2≈|Aϕ(x0, y0)|2 + ∂|Aϕ(x,y)|2

∂x
](x0,y0)(x− x0)

+
∂|Aϕ(x,y)|2

∂y
](x0,y0)(y − y0) +

1
2

∂2|Aϕ(x,y)|2

∂x2 ](x0,y0)(x− x0)
2

+ 1
2

∂2|Aϕ(x,y)|2

∂y2 ](x0,y0)(y − y0)
2 + 1

2

∂|Aϕ(x,y)|2

∂x∂y
](x0,y0)

(x− x0)(y − y0),
(10)

where x0 = mT and y0 = nF (respectively x0 = 0 and y0 =
0) to approximate the interference mean power (respectively
to approximate the desired signal mean power).
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By substituting equation (10) in the expressions of σI2 and
σD

2 and taking into account the symmetry of the Doppler
power spectral density of the Jake’s model, we easily obtain
the following approximate expressions

σI
2≈E.

(∑
(m,n)6=(0,0)

|Aϕ(mT, nF )|2 + T 2
mζϕ(mT, nF ) +

f2
D
4
ξϕ(mT, nF )

)
.

(11)

and

σD
2≈E.

(
|Aϕ(0, 0)|2 + T 2

mζϕ(0, 0) +
f2
D

4
ξϕ(0, 0)

)
. (12)

Here ζϕ(x, y) = 8π2
∫ +∞
−∞ f2|ϕ(f + y/2)|2|ϕ(f − y/2)|2df and

ξϕ(x, y) = 8π2
∫ +∞
−∞ t2|ϕ(t+ x/2)|2|ϕ(t− x/2)|2dt.

3.2. Optimization of the pulse shape
Since we write the pulse as a linear combination of the most local-
ized Hermite functions, the approximate SIR criterion can be ex-
pressed as follows

SIR =

∑
0≤k,l,k′,l′≤N−1

α2kα
∗
2lα
∗
2k′α2l′Sk,l,k′,l′ (0, 0)

∑
0≤k,l,k′,l′≤N−1

α2kα∗2lα
∗
2k′α2l′ .(

∑
(m,n)6=(0,0)

Sk,l,k′,l′ (mT, nF ))
,

(13)

where
Sk,l,k′,l′(mT, nF ) = A2k,2l(mT, nF )A∗2k′,2l′(mT, nF )+8π2T 2

m.∫
f2u2k(f + nF/2)u∗2k′(f + nF/2)u∗2l(f − nF/2)u2l′(f −

nF/2)df + 8π2 f2
D
4

∫
t2u2k(t + mT/2)u∗2k′(t + mT/2)u∗2l(t −

mT/2)u2l′(t−mT/2)dt, for any m and n.
Let uT = [α0, ..., αN−1]. As a function of u, the SIR can be
expressed as

g(u) =
(u⊗u)†A(u⊗u)

(u⊗u)†B(u⊗u)
, (14)

where⊗ is the Kronecker tensor product, A is aN2×N2 Her-
mitian positive-definite matrix of elements Sk,l,k′,l′(0, 0) and
B is aN2×N2 Hermitian positive-definite matrix of elements∑

(m,n) 6=(0,0) Sk,l,k′,l′(mT, nF ).
The optimization procedure is based on iterative method us-
ing the gradient algorithm to find the optimal coefficients of
pulse ϕ(t) that maximize the approximate SIR.
The iterative algorithm is composed of two steps: an initial-
ization step and an iterative one. In the first step, we initialize
the vector u0. Then, the algorithm inductively reestimates u
as follows

u(k+1) = u(k) + µ(k)∇ug(u(k)) (15)

with µ(k) is the optimal step size respectively associated to u.
At the kth iteration, the functions Υ(µ) = u(k) +µ∇ug(u(k))
is the rational function respectively in µ. Then, the optimal
step size is obtained as follows

µ(k) = argmaxµΥ(µ). (16)

For the complexity evaluation, we note that a mathematical
number of operations in terms of additions and multiplica-
tions to make for every iteration (for each m and n). Ev-
ery iteration requires by square (each k, l, k′ and l′) approxi-
mately 40∗nstep∆τ

∗nstep∆ν
operations in the exact case and

37+40∗nstep∆f
+40∗nstep∆t

operations in the approximate
case. Thus, we note that our approximate expression leads to
a reduction of about 49% the number of mathematical opera-
tions with respect to the exact expression.

4. SIMPLIFIED MODULATOR AND
DEMODULATOR IMPLEMENTATION

We note that the complexity of the modulator and demodula-
tor implementation is even more important when the number
of subcarriers is large. In this paper, we propose a simplified
and efficient modulator/demodulator implementation, by us-
ing IFFT in the transmitter and FFT in the receiver, to reduce
the hardware complexity. This simplification reduces also the
manufacturing costs and the consumption of terminals which
is very interesting for OEMs.

4.1. Simplified modulator implementation

Times domain samples of the OFDM signal are obtained by
sampling the baseband transmitted signal s(t) given in (1) at
time instants t = qTs, where Ts = 1/KF is the sampling
period. Then, we have

s(qTs) =
∑
m

(
∑
n

amne
j2πnF (qTs−mT ))ϕ(qTs −mT )

=
∑
m

(
∑
n

amne
j2πnq/Ke−j2πnmFT )ϕ(qTs −mT )

=
∑
m

{
IFFT(amne

−j2πnmFT )
}

mod(q,K)
ϕ(qTs −mT ),

(17)

with IFFT(.) is the Inverse Fast Fourier Transform and
mod(., .) is the modulo division operator.
In order to reduce the implementation complexity of the sys-
tem, we assume that the OFDM symbol duration T is an
integer multiple of Ts and T = PTs, with P = TFK.
The generation of the sampled signal given in equation (18)
is illustrated in Figure 1 and described as follows
Preparotory framework: the optimized pulse ϕ(t) is trun-
cated to a MT duration and the other values are set to zero.
We note that M is chosen great enough to neglect the lowest
values of ϕ(t). Then, the optimized pulse is sampled at time
instants qTs. The obtained samples are saved in aMP -length
memory. Moreover, we initialize a cyclic register with MP
zeros and we point at instant 0.
Signal generation: For the generation of the sampled signal
given in (18), we need M steps described in the following:

1. In the first step, we apply the IFFT on the K sym-
bols {a0,n, n = 0, ...,K − 1}. Thereafter, we duppli-
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Fig. 1. Modulator implementation steps

cate the IFFT, of period 1/F , MP/K times. Then, we
multiply the dupplicated IFFT with the samples of the
optimized pulse, saved in the memory. The result of
the multiplication is then transferred to the register. We
transmit the P first samples corresponding to the first
T seconds of the register and empty its content after its
transmission. The pointer is advanced by P samples to
point at T seconds.

2. In the (m + 1)th step, we take into account the IFFT
symbol of am,n, n = 0, ...,K−1 in the sampled signal
generation. For this aim, we multiply the IFFT dup-
plicated MP/K times with the pulse samples saved in
the memory. The resut is circularly shifted with mP
samples and added with the register content. Then, we
transmit the P samples from the pointer. We move the
pointer by P samples to point at instant (m+ 1)T sec-
onds.

4.2. Simplified Demodulator implementation

At the receiver, the optimized pulse ϕ(t) is also truncated
to MT duration and the other values are set to zero. We
sample the truncated pulse at the sampling rate 1/Ts and
save in a MP -length memory. We initialize a cyclic register
with MP zeros and we point at instant 0. We collect the
MP successive samples corresponding to the received signal
between the instant 0 and instant MT seconds. We multiply
the register content with the memory, sum over all periods
of 1/F length and apply the FFT to recover the symbols
{a0,n, n = 0, ...,K − 1}. We move the pointer to instant T
seconds. Then, we replace the P first samples of the register
with P new samples corresponding to the received signal
between MT and (M + 1)T time instants. We multiply the
register from the pointer indication with the memory, sum
over all segments of 1/F duration and apply the FFT to re-
cover the symbols {a1,n, n = 0, ...,K − 1}. The process is
repeated in the same manner to recover the all transmited
symbols.

Fig. 2. Layout of the time-frequency plane for SIR evaluation

5. SIR OBTAINED THROUGH SYSTEM LEVEL
SIMULATION

In this section, we propose an efficient method to determine
the mean powers of the interference and desired signals.
With these mean powers, we evaluate the simulated SIR. Our
method is described as follows:
Mean power of the interference: Our idea is to generate
OFDM signals of finite length. For each signal, we insert
some zeros and compute the sum of the square of the deci-
sion variables on these zeros in order to compute the mean
power of the interference. Without loss of generality, we fill
the time-frequency plane with 4-PSK modulated symbols.
The symbols wich are used for the interference evaluation are
set to zero. They are chosen far apart so that we neglect the
non accounted interference that could have been generated if
one of these symbols is not set to zero but used to send 4-PSK
data. We fill by the maximum of zeros in the frequency and
time domains as shown in Figure 2 and transmit the symbols
over our multicarrier system described in the last section.
This method to determine the mean power of the interference
is considered accurate since the ambiguity of the optimized
pulse decreases exponentially.
Desired signal power: We fill the time-frequency plane with
zeros. Without loss of generality, the symbols wich are used
to compute the desired signal power are replaced with 4-PSK
modulated symbols. As shown in Figure 2, these symbols are
chosen so that they do not interfere with their neighbouring
ones in the time-frequency domain. We transmit the symbols
over our optimized multicarrier system and compute the sum
of the square of the decision variables on 4-PSK data to find
the desired signal power.

6. NUMERICAL AND SIMULATION RESULTS

Simulations are realized for a highly time and frequency dis-
persive channel characterized by the channel scattering func-
tion obeying (6). The optimization process is carried out for
discrete lattice densities ζ = 1/FT ranging from 0.5 to 1.
In Figure 3, we present the evolution of the exact SIR and of
the approximate SIR with respect to FT for OFDM systems
operating over doubly dispersive noiseless channels with dis-
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persion factor ϑ = BDTm = 10−2. Figure 3 shows that
the approximate SIR follows closely the exact one for any or-
der of combination. Also, notice that exact SIR optimization
takes much more time than approximate SIR optimization.
Then, we can conclude that our approximation of the SIR al-
lows a low complexity pulses design with imperciptibe loss
in the performance. Moreover, Figure 3 shows that the values
of the SIR for N = 11 and N = 13 are the same. Next, we
consider that the optimal pulses are reached as the combina-
tions of the 11 most localized Hermite waveforms.
In Figure 4, we compare the numerically optimized SIR with
the SIR computed through optimized OFDM system level
simulation for different values of the dispersion factor (ϑ =
10−2, ϑ = 10−3 and ϑ = 10−4). Since P = TFK must be
an integer and TF≥1, we have TF∈

{
1, 1 + 1

K , 1 + 2
K , ...

}
.

So, in order to have many possible values of TF between
1 and 2, we should consider a great number of subcarriers.
In our simulations, we consider K = 128 and three values
of TF : TF = 1.2656, TF = 1.5625 and TF = 1.8906.
For the considered values of TF , we compare in Figure 4 the
optimized SIR obtained through numerical optimization with
the SIR computed through system level simulation. Figure 4
shows that the SIR achieved through system level simulation
is roughly equal to the SIR obtained through pulses numerical
maximization.

7. CONCLUSION

In this paper, an optimized OFDM pulse is proposed and im-
plemented for its realistic performance evaluation. The op-
timization of the pulse shape is undertaken with an approxi-
mate expression of the SIR instead of the exact one, in order
to accelerate the optimization procedure. We show that the
SIR optimized using the approximate expression can achieve
approximately the same value of the SIR optimized using the
exact one. For the optimized OFDM system simulation, we
proposed efficient modulator and demodulator implementa-
tions. Moreover, we proposed a simple and efficient method
to determine the mean power of the interference and the de-
sired signal power in order to deduce a mean value of the SIR
resulting from the system simulation. Our simulation results
showed that the SIR obtained through system level simulation
matches the numerically optimized SIR.
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