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ABSTRACT

In this paper, we study the effect of collaboration between
nodes for direction of arrival (DOA) estimation in a full con-
nected wireless acoustic sensor network (WASN) where the
position of the nodes is unknown. Each node is equipped
with a linear microphone array which defines a node-specific
DOA with respect to a single common target speech source.
We assume that the DOA estimation algorithm is operated
in conjunction with a distributed noise reduction algorithm,
referred to as the distributed adaptive node-specific signal
estimation (DANSE) algorithm. To avoid additional data ex-
change between the nodes, the goal is to exploit the shared
signals used in the DANSE algorithm to also improve the
node-specific DOA estimation. The DOA estimation is based
on the multiple signal classification (MUSIC) algorithm (if
sufficient computing power is available), or a least-squares
(LS) method based on a locally estimated steering vector
which allows to eliminate the exhaustive search in MUSIC
and results in a significantly lower computational complexity.
Simulation results demonstrate that collaboration between
nodes improves the performance of the DOA estimation com-
pared to the case where the nodes operate individually, i.e. do
not collaborate.

Index Terms— Direction-of-arrival estimation, wireless
sensor networks, distributed estimation
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1. INTRODUCTION

Microphone arrays allow one to exploit spatial information in
acoustic signal processing applications. For example, they al-
low for localization of target sound sources, such as speech
sources, as well as cancellation of undesired sound waves im-
pinging on the array from certain directions other than the di-
rections from which the target sound signals come [1]. Wire-
less acoustic sensor networks (WASNs) are an emerging tech-
nology in the field of multi-microphone acoustic signal pro-
cessing. A WASN consists of a collection of nodes which
are equipped with a local microphone array, a signal process-
ing unit and wireless communication facilities. The nodes
can then cooperate to solve certain acoustic signal processing
tasks by exchanging relevant information amongst each other.
In this paper, we assume that each node is equipped with
a uniform linear array (ULA) of microphones which means
that the microphones are placed on a single line with uniform
spacing.

Considering the fact that sensor nodes are often battery-
powered and have a limited computational capacity, WASN
algorithms that need less communication and computational
power are generally desired. To reach this goal, unlike cen-
tralized processing in which all the nodes send their raw ob-
servations to a central unit for processing, we consider here a
distributed approach. The processing task is then spread over
all the nodes and they exchange signals, possibly after a local
in-node processing, among each other.

In this paper, node-specific direction of arrival (DOA) es-
timation in a fully connected WASN is addressed where the
position of the nodes is unknown. By the term node-specific,
we refer to the case in which each of the nodes estimates its
own specific DOA for a single common target speech source.
We assume that the DOA estimation is operated in conjunc-
tion with a distributed noise reduction algorithm. One appli-
cation could be a video conferencing in which on top of the
noise reduction for speech enhancement, we are also inter-
ested in steering each node’s built-in camera towards the loca-
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tion of the speaker. We will investigate whether the DOA es-
timation can benefit from using the signals that are exchanged
between nodes within the distributed noise reduction algo-
rithm that is already in place, and we will compare this to
the case where the nodes operate individually, i.e. use only
their own microphone signals for DOA estimation.

For the sake of this assessment, we use the distributed
adaptive node-specific signal estimation (DANSE) algorithm
[2], [3] for noise reduction. To avoid additional data ex-
change between the nodes, the goal is to exploit the shared
signals used in the DANSE algorithm to also improve the
node-specific DOA estimation. With DANSE in place, we
estimate the node-specific speech correlation matrix in each
node given the node’s own microphone signals together with
the compressed-and-filtered broadcast signals of the other
nodes. Given the node-specific speech correlation matrix,
the node-specific steering vector corresponding to the tar-
get speech source is extracted, from which the node-specific
DOA is estimated based on either MUSIC or a simpler least-
squares (LS) method. The main noticeable advantage of the
proposed LS method over MUSIC is that it eliminates the
need for an exhaustive search over all possible angles which
could be problematic taking the limited available computa-
tional power into account. It is reiterated that the proposed
approach is blind in that the position of the nodes is unknown,
and only the local array geometry at the individual nodes is
exploited.

The paper is organized as follows. The data model and
problem statement are presented in section 2. In section 3, the
LS method and MUSIC are explained for DOA estimation.
Section 4 presents the proposed collaborative steering vector
estimation and DANSE. Simulation results are presented in
section 5 and the conclusions are drawn in section 6.

2. PROBLEM STATEMENT AND DATA MODEL

We consider a WASN with J nodes in which each node k has
direct access to its ownMk microphones forming a ULA. The
signal of microphone m at node k in the frequency domain
can be decomposed as:

ykm(ωn) = skm(ωn) + nkm(ωn) (1)

where skm(ωn) and nkm(ωn) are the target speech signal
and undesired noise signal in microphone m of node k and
ωn = 2πn/L is the discrete frequency domain variable in
which the resolution is defined by the discrete Fourier trans-
form (DFT) of size L and and n = 0, 1, . . . (L/2 + 1).
By stacking (1) for m = 1, . . . ,Mk, we obtain yk(ωn) =

[yk1(ωn) . . . ykMk
(ωn)]

T
= sk(ωn) + nk(ωn). All the

yk(ωn)’s are stacked in the full M -channel signal y(ωn) =

[y1(ωn)T . . .yJ(ωn)T ]
T in which M =

∑J
k=1Mk. Con-

sidering s(ωn) as the target speech source signal propagated
from a single source, we have sk(ωn) = ak(ωn)s(ωn) in

which ak(ωn) is the node-specific Mk-dimensional steer-
ing vector. In general, ak(ωn) is composed of the acoustic
transfer functions (including room acoustics and microphone
characteristics) from the target speech source to each micro-
phone of node k. In a sufficiently large room with negligible
reverberations, we can write ak(ωn) as a function of the array
manifold vector gk(ωn, θk) which expresses the phase shifts
with respect to the first microphone of node k:

ak(ωn) = ak1(ωn)gk(ωn, θk) (2)

= ak1(ωn)


1

e−jωnd cos(θk)Fs/c

...
e−jωn(Mk−1)d cos(θk)Fs/c

 (3)

where θk is the DOA at node k, ak1(ωn) is the acoustic trans-
fer function from the target speech source to the first mi-
crophone of node k, Fs is the sampling frequency, c is the
speed of sound, and d is the distance between microphones
at the node. For the sake of an easy exposition, the relative
attenuation factors are neglected here, i.e., we assume that
|akm(ωn)|
|ak1(ωn)| = 1 (this is without loss of generality, as we will

only extract the phase information from (2)).
In this paper, we study the effect of collaboration between

nodes on the performance of the node-specific DOA estima-
tion in a WASN where the position of the nodes is unknown.

3. DOA ESTIMATION

This section describes two methods to extract the DOA from
a given steering vector estimate āk(ωn). The proposed co-
operative procedure for this estimation will be explained in
section 4. As the steering vector can only be estimated up to
an unknown scaling, we assume in the sequel that āk(ωn) is
normalized with respect to its first entry, i.e., each element is
divided by the first entry such that āk1(ωn) = 1.

3.1. Least Squares DOA estimator

We define pk(ωn, θk) as the absolute phase of the generic
array manifold gk(ωn, θk) at node k, i.e.:

0
ωndcos(θk)Fs

c
...

ωn(Mk−1)dcos(θk)Fs

c

 = pk (ωn, θk) . (4)

Defining xk = cos(θk), node k then estimates the xk from an
overdetermined set of equations which finally leads to solving
a least square minimization problem with the following cost
function:

min
xk

∑
ωn

‖pkt(ωn, θk)− p̄kt(ωn)‖2 (5)
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where subscript t denotes the truncated pk in which the first
row is omitted (because it is always zero) and p̄kt is the cor-
responding truncated phase vector of āk(ωn). Stacking these
variables for the different discrete frequencies yields

pks = [pTkt(ω1) . . .pTkt(ωL/2+1))]T (6)

p̄ks = [p̄Tkt(ω1) . . . p̄Tkt(ωL/2+1))]T . (7)

To correct the jumps in phase angles, phase unwrapping must
be performed first. The solution of (5) is then given by:

x̄k =
pTks p̄ks
pTkspks

(8)

and finally we compute the node-specific DOA as θ̄k =
cos−1(x̄k)

3.2. MUSIC

MUSIC is one of the well-known high resolution algorithms
for DOA estimation. MUSIC decomposes the speech correla-
tion matrix into a signal and noise subspace which are orthog-
onal to each other. In the case of a single target speech source,
the signal subspace is defined by the eigenvector correspond-
ing to the largest eigenvalue of the speech correlation matrix,
and the noise subspace can be constructed as the (Mk − 1)-
dimensional subspace orthogonal to this signal subspace, e.g.,
using Gramm-Schmidt orthogonalization. The matrices con-
taining the basis vectors of the signal and noise subspaces are
then denoted as:

Esk(ωn) = [q1(ωn)] (9)
Enk

(ωn) = [q2(ωn)| . . . |qMk
(ωn)] (10)

where q1(ωn) is the eigenvector defining the signal subspace,
and EH

nk
(ωn)q1(ωn) = 0. An exhaustive search over all

possible θk is performed, each of them yielding a differ-
ent generic array manifold vector gk(ωn, θk). Merging all
frequency-dependent DOA estimations can be performed by
using one of the three available methods: arithmetic (used
in this paper), geometric and harmonic averaging [4]. The
θk for which the so-called MUSIC pseudospectrum [5] is
maximized, will be the estimated DOA, i.e.,

θ̄k = arg max
θk

∑
ωn

1

gHk (ωn, θk)Enk
(ωn)EH

nk
(ωn)gk(ωn, θk)

.

(11)

4. COLLABORATIVE STEERING VECTOR
ESTIMATION USING DANSE

In this section we propose a collaborative approach to es-
timate each node-specific steering vector using the shared
broadcast signals of DANSE together with each node’s own

Node 1 ...

...

EVD based node-specific

steering vector estimation

J
a

LS / MUSIC/ESPRIT

node-specific DOA
Estimations

...

1
q

J
q

1
q

J
q

...

Node J

1
a

DANSE speech

correlation matrix based

on clean output signals

ˆ ˆ
1 1
s s

R
ˆ ˆ
J J
s s

R

... ...

EVD based node-specific

steering vector estimation

...
LS / MUSIC/ESPRIT

node-specific DOA
Estimations

LS / MUSIC/ESPRIT

node-specific DOA
Estimations

R1-DANSE - Speech

correlation matrix based

on clean output signals

R1-DANSE - Speech

correlation matrix based

on clean output signals

Fig. 1. The complete procedure for the proposed collaborative
estimation of node-specific DOAs.

signals. The first step is then to estimate the speech correla-
tion matrix at each node. A complete block diagram of the
scheme is illustrated in Figure 1. The correlation matrix of the
target speech signal component of the microphone signals,
sk, can be written as:

Rsksk(ωn) = E{sk(ωn)sk(ωn)H} = Ps(ωn)ak(ωn)ak(ωn)H

(12)
where Ps(ωn) = E{|s(ωn)|2} is the power of the target
speech signal, E{· · · } denotes the expected value opera-
tor, and the superscript H indicates the conjugate transpose
operator. In general, Rsksk(ωn) is unknown and has to be es-
timated from the collected signal observations. In the rest of
the paper, we use the hat superscript (̂.) as a case-dependent
notation which will be defined later. With the assumption
of uncorrelated ŝk(ωn) and n̂k(ωn), we have (we use an
overline (bar) to denote an estimate):

R̄ŝkŝk(ωn) = R̄ŷkŷk
(ωn)− R̄n̂kn̂k

(ωn) (13)

where R̄n̂kn̂k
(ωn) ≈ E{n̂k(ωn)n̂k(ωn)} and R̄ŷkŷk

(ωn) ≈
E{ŷk(ωn)ŷk(ωn)} which can be estimated during “noise-
only” and “speech-and-noise” periods, respectively. To dis-
tinguish between “noise-only” and “speech-and-noise” peri-
ods, a voice activity detection (VAD) mechanism must be
applied. Estimation of the second order signal statistics (R
matrices) can be done by time averaging in the short-time-
Fourier-transform (STFT) domain. In theory, Rŝkŝk(ωn) is
a rank-1 matrix for a single target speech source. In prac-
tice, however, due to the finite DFT size in the STFT analysis,
non stationarity of the noise and finite observation window
(which leads to estimation errors), the rank of R̄ŝkŝk(ωn) will
be greater than one. Therefore, we should use a method for
rank-1 approximation to extract the steering vector based on
(12).
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To evaluate the performance of the collaborative DOA es-
timation, it will be compared with 2 cases: namely the iso-
lated case and the centralized case; in the first, each node has
only access to its own observations, i.e. ŷk(ωn) = yk(ωn) ,
whereas in the second each node has access to allM observa-
tions throughout the entire network, i.e. ŷk(ωn) = y(ωn).

4.1. DANSE algorithm

For the purpose of noise reduction, node k then employs the
multi-channel Wiener filter (MWF) [6] in which the filter co-
efficients wk(ωn) are computed such that the following MSE
cost function, taking the target speech signal component of
the first microphone signal of node k as the desired signal, is
minimized:

min
wk(ωn)

E{
∣∣sk1(ωn)−wk(ωn)H ŷk(ωn)

∣∣2}. (14)

The solution is then given by [6]:

ŵk(ωn) = (Rŷkŷk
(ωn))

−1
Rŝkŝk(ωn)e1 (15)

where e1 = [1 0 . . . 0]T .
In this paper, we apply DANSE which is a distributed

adaptive noise reduction algorithm [2], [3]. This algorithm
is designed primarily for a fully connected sensor network
in which all the nodes broadcast pre-processed microphone
signals to all other nodes. The main objective of DANSE is
to generate a node-specific estimate of the target speech sig-
nal as it impinges on the first microphone of each individual
node. To reach this goal, DANSE compresses the individual
microphone signals of each node into a single-channel signal
zk which is then broadcast to the other nodes. Surprisingly,
without accessing all the observations in the network, the op-
timal estimation for each node can be obtained [2], [3]. For
the case of DANSE, ŷk(ωn) in (13)-(15) will be aMk+J−1
dimensional vector such that:

ŷk(ωn) =

[
yk(ωn)
z−k(ωn)

]
(16)

where, considering z(ωn) = [z1(ωn) . . . zJ(ωn)]T , z−k(ωn)
denotes the vector z(ωn) in which zk(ωn) is excluded. These
signals are generated based on the following filter-and-sum
process:

zk(ωn) = wyk
(ωn)Hyk(ωn) (17)

where wyk
(ωn) is the part of the ŵk(ωn) that is only ap-

plied to node k’s own Mk microphone signals yk(ωn). Note
that (17) compresses the Mk-channel signal yk(ωn) into a
single-channel signal zk(ωn), hence DANSE considerably re-
duces the required communication bandwidth, as well as the
per-node computational complexity when compared to the
centralized case. As a result, DANSE can considerably re-
duce the required communication bandwidth as well as the

local computational requirement. In DANSE, the nodes up-
date their ŵk(ωn) with (15) either sequentially [2] or simul-
taneously [3] (rS-DANSE). Here we consider a case in which
nodes update their filters in a sequential round robin fashion.
For further reading, we refer to [2] and [3].

4.2. Collaborative steering vector estimation

In order to estimate the steering vector from R̄ŝkŝk(ωn) with
exploiting the effect of collaboration between nodes, the fol-
lowing procedure is proposed. We perform eigenvalue de-
composition (EVD) for rank-1 approximation of the speech
correlation matrix, i.e.:

R̄ŝkŝk(ωn) ≈ v̂maxk
(ωn)v̂Hmaxk

(ωn)λmaxk
(ωn) (18)

where λmaxk
is the largest eigenvalue and v̂maxk

is its cor-
responding normalized eigenvector. We define vmaxk

as the
first Mk entries of v̂maxk

, only containing the part corre-
sponding to node k’s own microphone signals and ignoring
the signals obtained from the other nodes. Although this
means that we throw away information, there is still implicit
collaboration between the nodes as the EVD-based computa-
tion of first v̂maxk

and then of vmaxk
indeed also relies on

the signals from other nodes, which will (hopefully) result
in a better estimate of the steering vector. The reason why
we only proceed with vmaxk

rather than v̂maxk
, is because

the relative geometry between the microphone arrays of dif-
ferent nodes is assumed to be unknown. According to (12),
vmaxk

can be treated as a normalized estimate of the steering
vector, i.e. āk ≈ βvmaxk

, where β is a complex number.
Consequently, for the LS algorithm p̄kt in (5) will be the
phase of vmaxkt

/v1 where v1 is the first element of vmaxk

and vmaxkt
is vmaxk

with the first element removed. For the
case of MUSIC subspace decomposition in (9) we will have
q1 = vmaxk

. To evaluate how the collaboration between
the nodes impacts the DOA estimation, the acoustic scenario
illustrated in Figure 2 is simulated. In a non-reverberant
room, we assume a symmetric arrangement to create a sce-
nario in which the input signal to noise ratio (iSNR) will be
identical for all the nodes. We consider 4 nodes, each having
3 microphones that form a ULA, as well as 4 uncorrelated
multi-talker noise sources with equal noise power which will
be varied to manipulate the input SNR. A speech source in the
center of the room produces the target signal. Consequently,
the true values of the specific DOAs to be estimated are 90
degrees for each node. A sampling frequency Fs = 8kHZ and
DFT size of L = 1024 with 50% Hann-windowed overlaps
are used. To model the precise microphone signals of each
ULA, fractional delay filters are applied. Moreover, an ideal
VAD is used to exclude the effect of VAD errors. DANSE is
performed in batch mode, which means that all iterations are
done on the full signal length, and the nodes are updated in a
sequential round robin fashion. The speech source produces
short English sentences with a silence period between each
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two consecutive sentences. Sensor noise is modeled as an un-
correlated white Gaussian noise signal with 5% of the power
of the target speech signal as observed at the microphones.

Fig. 2. Acoustic scenario

5. SIMULATION RESULTS

To investigate the performance of the distributed DOA esti-
mation, it is compared with the centralized and isolated case.
A database with 28 speech signals of 68 seconds each is used
to simulate 28 Monte-Carlo (MC) runs with uncorrelated
multi-talker noise for each independent run. Figure 3 shows
the averaged absolute values of the DOA estimation errors
using the proposed LS method. As can be seen in this figure,
collaboration between nodes leads to a better performance
compared to the isolated estimation. Although the difference
is more clear for lower input SNRs, it should be mentioned
that in higher input SNR levels, collaborative estimation still
outperforms the isolated estimation. In the case of MUSIC,
more MC runs were required to obtain an intelligible figure.
Therefore, we have performed with 56 speech signals each 34
seconds. A resolution of 1 degree is used for the exhaustive
search. Again, it can be observed in Figure 4 that collab-
oration between the nodes significantly improves the DOA
estimation performance. As can be seen from the figures,the
DOA estimator based on MUSIC performs better at lower
SNRs than the estimations based on the LS method. This
comes at a cost of a significantly higher computational com-
plexity due to an exhaustive search over all possible DOA’s,
which may be impractical in WASNs with limited power
supply.

6. CONCLUSIONS

In this paper, we have studied the benefits of cooperation
between nodes in a node-specific DOA estimation task in a
WASN. The nodes use the broadcast signals generated by
the DANSE algorithm to improve the estimation of the local
node-specific steering vectors. To keep the effects of coop-
eration on the local steering vector extraction, we have used
an EVD-based rank-1 approximation. A LS method has been

Fig. 3. Absolute errors based on LS for distributed, central-
ized and isolated case

Fig. 4. Absolute errors based on MUSIC for distributed, cen-
tralized and isolated case

utilized for the estimation of node-specific DOAs. In addi-
tion, the MUSIC algorithm has also been employed to further
evaluate the performance of the estimation with collaborative
nodes. It has been demonstrated that the collaborative esti-
mation of DOAs with exploiting the shared signals used in
the DANSE algorithm, yields better results compared to the
isolated case.
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