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ABSTRACT

In this paper we propose a new approach to multi-microphone

dereverberation, based on the recent paradigm of embedded

optimization. The rationale of embedded optimization in

performing online signal processing tasks, is to replace tra-

ditional adaptive filtering algorithms based on closed-form

estimators by fast numerical algorithms solving constrained

and potentially non-convex optimization problems. In the

context of dereverberation, we adopt the embedded optimiza-

tion paradigm to arrive at a joint estimation of the source

signal of interest and the unknown room acoustics. It is

shown how the inherently non-convex joint estimation prob-

lem can be smoothed by including regularization terms based

on a statistical late reverberation model and a sparsity prior

for the source signal spectrum. A performance evaluation

for an example multi-microphone dereverberation scenario

shows promising results, thus motivating future research in

this direction.

Index Terms— dereverberation, embedded optimization,

nonlinear least squares, regularization, sparsity

1. INTRODUCTION

Dereverberation refers to the process of removing reverbera-

tion from microphone signals recorded in a reverberant room.

Since reverberation often has a fundamental impact on the

time-frequency signal characteristics, dereverberation has

been found to be a crucial component in diverse speech and

audio applications, such as hearing assistance, automatic

This research work was carried out at the ESAT Laboratory of KU Leu-

ven, and was supported by Research Council KUL: PFV/10/002 Optimiza-

tion in Engineering Center OPTEC, GOA/10/09 MaNet, GOA/10/11 Global

real- time optimal control of autonomous robots and mechatronic systems;

Flemish Government: IOF / KP / SCORES4CHEM, iMinds 2013; FWO:

PhD/postdoc grants, projects: G.0320.08 (convex MPC), G.0377.09 (Mecha-

tronics MPC); IWT: PhD Grants, projects: SBO LeCoPro; Belgian Federal

Science Policy Office: IUAP P7/19 (DYSCO, Dynamical systems, control

and optimization, 2012-2017), IUAP P7/23 (BESTCOM, Belgian network on

stochastic modeling analysis design and optimization of communication sys-

tems, 2012-2017); EU: FP7-DREAMS (MC ITN-316969), FP7-EMBOCON

(ICT-248940), FP7-SADCO (MC ITN-264735), ERC ST HIGHWIND (259

166), Eurostars SMART, ACCM. The scientific responsibility is assumed by

its authors.

speech recognition, voice communications, and acoustic

surveillance. Despite its wide applicability, dereverbera-

tion is generally still considered one of the most challenging

problems in the area of acoustic signal enhancement [1]. One

of the major difficulties is that dereverberation is an inverse

problem, i.e., one aims at inverting the room impulse response

(RIR), which is typically non-minimum-phase and possibly

time-varying. Furthermore, dereverberation is usually also a

blind problem, in which both the sound source signal and the

room acoustics are unknown.

The state of the art in speech dereverberation can be clas-

sified into three categories [1, Ch. 1]: (1) beamforming, (2)

speech enhancement, and (3) blind system identification and

inversion. Most of the existing methods rely on the use of

multiple microphones. This is implictly the case for the beam-

forming approaches which are based on microphone array

processing, see, e.g., [2]. Speech enhancement approaches to

dereverberation have also been shown to benefit from the use

of multiple microphones, e.g., for accurately estimating the

late reverberant signal spectrum [3] or for enhancing a linear

prediction residual by spatiotemporal averaging [4]. Finally,

blind system identification is typically based on the cross-

relation between different microphone signals [5], while the

inversion of a non-minimum-phase system has been shown to

be feasible only in the multi-channel case [6].

In this paper, a different approach to dereverberation is

proposed, which does not exactly fit into one of the three cat-

egories mentioned earlier. The proposed approach is some-

how related to the blind system identification and inversion

approach, however, it differs in that it does not require an ex-

plicit system inversion. Indeed, the major weakness of the

blind system identification and inversion approach is that the

design of a (multi-channel) inverse filter often appears to be

an ill-posed problem, which may be due to (near-)common

zeros [7] or system identification errors [8] in the RIRs. Re-

cent solutions to alleviate this weakness are based on modifi-

cations in the inverse filter design, such as subband inversion

[9], regularization [10], and forced spectral diversity [11].

Instead, we propose to avoid an explicit system inversion

by adopting a recent paradigm coined as embedded optimiza-

tion. This paradigm is based on the observation that the field

EUSIPCO 2013 1569744761
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of numerical optimization has reached a degree of maturity

and computational efficiency such that it can be applied to

online signal processing problems that are traditionally solved

using recursive implementations of “classical” estimators ad-

mitting a closed-form solution [12]. In particular, it allows to

directly estimate a signal vector of interest, rather than taking

a detour by designing a filter to recover a signal of interest

from noisy or corrupted observations.

The outline of this paper is as follows. In Section 2 we

propose a relevant signal model and formulate the multi-

microphone dereverberation problem. In Section 3 we pro-

pose a number of embedded optimization algorithms for

multi-microphone dereverberation. These algorithms are

evaluated in Section 4 for a simple example scenario. Finally,

Section 5 concludes the paper.

2. PROBLEM STATEMENT

Consider a point source emitting a sound signal s0(t), t =
1, . . . , N , which propagates inside a room and is picked up

by M microphones at different positions. The resulting mi-

crophone signals (m = 1, . . . ,M ) are defined as

ym(t) = hT
m,0(t)s0(t) + em,0(t), t = 1, . . . , N (1)

where the length-L RIR vector hm,0(t) from the source to the

mth microphone at time t is defined as

hm,0(t) =
[

h
(0)
m,0(t) . . . h

(L−1)
m,0 (t)

]T

, t = 1, . . . , N (2)

the length-L source signal vector s0(t) at time t is defined as

s0(t) =
[

s0(t) . . . s0(t− L+ 1)
]T

, t = 1, . . . , N (3)

and em,0(t), t = 1, . . . , N , denotes measurement noise.

In this paper, we make a number of assumptions that may

not be valid in realistic sound acquisition scenarios, but which

will allow us (1) to focus on the core issues encountered in the

dereverberation problem, postponing some practical and im-

plementation issues to future work (see Section 5), and (2)

to investigate and interpret the proposed algorithms’ behavior

only w.r.t. these core issues, disregarding the potential impact

of other issues on the algorithm performance. The assump-

tions are the following (with m = 1, . . . ,M ):

• microphone signals are available for the entire time

window t ∈ [1, N ] under consideration;

• RIRs are time-invariant within the time window t ∈
[1, N ] under consideration, i.e., hm,0(t) ≡ hm,0;

• initial source signal conditions s0(t), t ≤ 0 are known

(and assumed equal to zero for ease of notation);

• no measurement noise is present, i.e., em,0(t) ≡ 0;

• all RIRs have equal and known length L ≤ N .

Based on these assumptions, the problem considered in

this paper can be formulated as follows:

Problem 1 (Multi-microphone dereverberation) Given a

length-MN vector of microphone signals generated as

y = H0s0 (4)

find the best possible estimate of the length-N source signal

vector s0. Here, with m = 1, . . . ,M ,

y =
[

yT
1 . . . yT

M

]T
, ym =

[

ym(1) . . . ym(N)
]T

(5)

H0 =
[

HT
1,0 . . . HT

M,0

]T
(6)

Hm,0 =





















h
(0)
m,0 0 0 . . . 0
...

. . .
. . .

. . .
...

h
(L−1)
m,0 . . . h

(0)
m,0

. . . 0
...

. . .
...

. . . 0

0 . . . h
(L−1)
m,0 . . . h

(0)
m,0





















N×N

(7)

s0 =
[

s0(1) . . . s0(N)
]T

. (8)

Since the RIRs in H0 as well as the source signal vector s0
are unknown, we define the following parameter vectors,

h =
[

hT
1 . . . hT

M

]T
, hm =

[

h
(0)
m . . . h

(L−1)
m

]T

(9)

s =
[

s(1) . . . s(N)
]T

(10)

e =
[

eT1 . . . eTM
]T

, em =
[

em(1) . . . em(N)
]T

(11)

and a data model admitting two equivalent formulations,

y = Hs+ e (12)

= (IM ⊗ S)h+ e (13)

where H is a MN × N matrix with the coefficients of the

RIRs parameter vector h in a block Toeplitz structure as in

(6)-(7), IM is the M ×M identity matrix, ⊗ denotes the Kro-

necker product, and S is a N × L Toeplitz matrix defined as

S =

















s(1) . . . 0
...

. . .
...

s(N − L+ 1) . . . s(1)
...

. . .
...

s(N) . . . s(N − L+ 1)

















. (14)

The error signal parameter vector e is included to account for

estimation errors in both h and s.

3. EMBEDDED OPTIMIZATION ALGORITHMS

State-of-the-art multi-microphone dereverberation algorithms

in the category of blind system identification and inversion

approach Problem 1 using a two-step procedure. First, an es-

timate Ĥ of the RIRs matrix is computed using a blind iden-

tification method that typically exploits the cross-relation be-

tween different microphone signals [5]. Second, an M -input,

2
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single-output inverse filter g is designed and an estimate of

the source signal vector is obtained as

ŝ = Gy (15)

where G is a block Toeplitz matrix of appropriate dimensions,

containing the inverse filter coefficients in g.

Instead, we propose to jointly estimate the RIRs parameter

vector h and the source signal parameter vector s. We derive

three nonlinear least squares (NLS) optimization problems for

estimating h and s, and point out their strengths and weak-

nesses. More particularly, we consider NLS problems without

regularization (NLS), with ℓ2-norm regularization exploiting

prior knowledge on h (ℓ2-RNLS), and with ℓ1-norm and ℓ2-

norm regularization exploiting prior knowledge on s and h

(ℓ1/ℓ2-RNLS). A block coordinate descent (BCD) approach

is adopted for solving these problems, resulting in three iter-

ative algorithms in which h and s are estimated sequentially.

The sequential nature of the proposed algorithms shows a

certain degree of similarity with the state-of-the-art two-step

procedure for blind system identification and inversion. A

crucial difference, however, is that the RIRs parameter vec-

tor h is not just estimated once, but its estimate is iteratively

refined as improved estimates of the source signal parame-

ter vector become available. Another similarity with the state

of the art, is that the source signal parameter vector estimate

resulting from the NLS and ℓ2-RNLS problems is linearly re-

lated to the microphone signal vector y, so that it can be in-

terpreted as the result of an inverse filtering approach, even

though an inverse filter is never explicitly designed or com-

puted. When solving the ℓ1/ℓ2-RNLS problem, however, the

source signal parameter vector estimate is not linearly related

to the microphone signal vector and so an inverse filtering in-

terpretation is not appropriate.

3.1. NLS problem

The starting point for the derivation of embedded optimiza-

tion algorithms solving Problem 1, is the formulation of an

NLS optimization problem for the data model (12)-(13),

min
h,s,e

‖e‖22 (16)

s. t. y = Hs+ e (17)

= (IM ⊗ S)h+ e. (18)

The proposed solution strategy consists in first minimizing

(16) w.r.t. {s, e} for a fixed value of h = ĥ using the equality

constraints in (17), then minimizing (16) w.r.t. {h, e} for a

fixed value of s = ŝ using the equality constraints in (18), and

repeating this procedure for a number of iterations (here fixed

to kmax). The resulting BCD algorithm is shown in Algorithm

1, where (·)+ denotes the Moore-Penrose pseudoinverse.

3.2. ℓ2-regularized NLS problem

It is well known that the NLS optimization problem in (16)-

(18) generally has multiple local solutions, and the BCD algo-

Algorithm 1 BCD algorithm for NLS problem

Input initial RIRs parameter vector estimate ĥ(0)

Output parameter vector estimates ŝ = ŝ(kmax), ĥ = ĥ(kmax)

1: for k = 1, . . . , kmax do

2: ŝ(k) = (Ĥ(k−1))+y

3: ĥ(k) =
(

IM ⊗ (Ŝ(k))+
)

y

4: end for

rithm will only converge to the global solution if the algorithm

is properly initialized (i.e., if a good initial estimate for either

h or s is available). An effective approach for smoothing the

NLS objective function, and hence facilitating convergence to

a meaningful local solution, is the addition of a regularization

term incorporating prior knowledge on the unknown parame-

ter vectors. A first approach to regularization consists in the

addition of a weighted ℓ2-norm of the RIRs parameter vector

h to (16),

min
h,s,e

‖e‖22 + λ1‖h‖
2
W

(19)

s. t. y = Hs+ e (20)

= (IM ⊗ S)h+ e (21)

A mean-square-error optimal choice for the weighting matrix

W corresponds to the inverse covariance matrix of the true

RIRs vector h0 =
[

hT
1,0 . . . hT

M,0

]T
, which is considered

to be a random zero-mean variable having a Gaussian prob-

ability density function [13]. In the context of dereverbera-

tion, the use of a statistical model for the late reverberation

component in the RIRs has been proven useful in a variety of

algorithms. The most commonly used model is the so-called

Polack’s model [3], which approximates the temporal enve-

lope of the RIRs using an exponential function with a fixed

decay α. We will adopt this model in the proposed algorithm,

and neglect any cross-correlations between the RIRs parame-

ters, such that W can be defined as a diagonal matrix,

W = IM ⊗ diag
{

1, e2α, . . . , e2(L−1)α
}

. (22)

The resulting BCD algorithm is given in Algorithm 2.

Algorithm 2 BCD algorithm for ℓ2-RNLS problem

Input initial RIRs parameter vector estimate ĥ(0), Polack’s

model decay α, regularization parameter λ1

Output parameter vector estimates ŝ = ŝ(kmax), ĥ = ĥ(kmax)

1: W̄ = diag
{

1, e2α, . . . , e2(L−1)α
}

2: for k = 1, . . . , kmax do

3: ŝ(k) = (Ĥ(k−1))+y

4: ĥ(k) =
(

IM ⊗
[

(Ŝ(k)T Ŝ(k) + λ1W̄)−1Ŝ(k)T
]

)

y

5: end for

3
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3.3. ℓ1/ℓ2-regularized NLS problem

With the aim of obtaining an additional smoothing effect,

prior knowledge on the source signal vector can also be in-

corporated in the ℓ2-RNLS optimization problem. Building

on the proven efficiency of sparse representations for speech

and audio signals [14], an ℓ1-norm regularization in a suitable

spectral basis seems to be appropriate for this purpose. When

combined with the ℓ2-norm regularization of the RIRs param-

eter vector, this results in the following optimization problem,

min
h,s,e

‖e‖22 + λ1‖h‖
2
W + λ2‖Ds‖1 (23)

s. t. y = Hs+ e (24)

= (IM ⊗ S)h+ e. (25)

Here, D is an N × N orthogonal matrix defining a spectral

transform, such as the discrete Fourier or cosine transform

(DFT/DCT). In contrast to the previous two problems, the op-

timization problem in (23)-(25) does not admit a closed-form

solution when optimizing w.r.t. {s, e}. However, this par-

ticular subproblem is convex and can therefore be efficiently

solved using existing software (e.g., we use CVX/SeDuMi).

The resulting BCD algorithm is shown in Algorithm 3.

Algorithm 3 BCD algorithm for ℓ1/ℓ2-RNLS problem

Input initial RIRs parameter vector estimate ĥ(0), Polack’s

model decay α, orthogonal spectral transform matrix D,

regularization parameters λ1, λ2

Output parameter vector estimates ŝ = ŝ(kmax), ĥ = ĥ(kmax)

1: W̄ = diag
{

1, e2α, . . . , e2(L−1)α
}

2: for k = 1, . . . , kmax do

3: ŝ(k) = argmins ‖y − Ĥ(k−1)s‖22 + λ2‖Ds‖1

4: ĥ(k) =
(

IM ⊗
[

(Ŝ(k)T Ŝ(k) + λ1W̄)−1Ŝ(k)T
]

)

y

5: end for

4. EVALUATION

The proposed embedded optimization algorithms for multi-

microphone dereverberation are evaluated here by means of

a simulation example. A microphone signal vector y is gen-

erated by filtering a source signal vector s0 of length N =
1024, corresponding to a quasi-stationary voiced segment of

a male speech signal sampled at 8 kHz, using M = 5 syn-

thetic RIRs of length L = 100. The RIRs are synthesized

by shaping M = 5 different Gaussian white noise (GWN)

sequences with an exponential envelope corresponding to Po-

lack’s model with α = 0.025. The same envelope is used

for designing the weighting matrix W in the ℓ2-RNLS and

ℓ1/ℓ2-RNLS problems. The regularization parameters have

been chosen as λ1 = λ2 = 0.1, and D is the DCT matrix.

All algorithms start from a random GWN initial RIRs param-

eter vector estimate ĥ(0) and perform kmax = 10 iterations.

In the simulation results, the inherent scaling ambiguity has

been removed by plotting ŝ/a and aĥ rather than ŝ and ĥ,

with a =
√

ŝT ŝ/sT0 s0.

Fig. 1 shows the true and estimated RIR (m = 2), while

Fig. 2 compares the magnitude spectrum of the true and es-

timated source signal. As expected, the BCD algorithm does

not converge to the global NLS problem solution, and suffers

from a severe overestimation of the coefficients in the RIR

tail as well as large (≥ 10 dB) source spectrum estimation er-

rors in some frequency regions. The ℓ2-norm regularization is

seen to have a beneficial effect on the overall estimation per-

formance, yielding RIR and source spectrum estimates that

follow the envelopes of the true RIR and source spectrum. In

addition, the ℓ1-norm regularization further increases the lo-

cal estimation performance: the right plot in Fig. 1 shows an

improved estimation of the early RIR coefficients, while the

top right subplot in Fig. 2(c) illustrates the improved accuracy

of the estimated quasi-harmonic speech components.

5. CONCLUSION

In this paper, we have introduced a new approach to multi-

microphone dereverberation, based on a recent paradigm

known as embedded optimization. Three sequential optimiza-

tion algorithms have been proposed, which enable the joint

estimation of the unknown source signal and room acoustics.

By adopting an iterative numerical optimization strategy, the

need for an explicit inverse filter design is avoided. How-

ever, the inclusion of appropriate regularization terms in the

inherently non-convex optimization problem appears to be

crucial for assuring convergence to a meaningful local so-

lution. In particular, the addition of a weighted ℓ2-norm of

the RIRs parameter vector, based on a statistical model for

late reverberation, leads to an improved overall estimation

performance. In addition, the accuracy of the estimated early

reflections and (quasi-)harmonic source signal components

can be further increased by incorporating an ℓ1-norm regular-

ization term for the source signal parameter vector DFT/DCT.

The work presented in this paper is a first step towards the

development of efficient and reliable embedded optimization

algorithms for multi-microphone dereverberation. A number

of challenges for future research remain, e.g.,

• to move from batch to online (frame-based) processing,

properly managing initial/final conditions,

• to generalize the ℓ2-norm regularization for dealing

with realistic impulse responses,

• to take measurement noise into account,

• to arrive at autonomous optimization algorithms in-

volving proper termination criteria and cross-validation

procedures for adjusting the regularization parameters,

• to derive fast SQP/SCP algorithms exploiting the par-

ticular dereverberation problem structure,

• to use perceptual criteria in the problem formulations,

• to evaluate the resulting dereverberation performance.
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Fig. 1. Comparison of true RIR and RIR parameter vector estimates for m = 2.
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Fig. 2. Comparison of magnitude spectra of true source signal and source signal parameter vector estimates.
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