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ABSTRACT

This paper contributes with a unified formulation that merges previ-
ous analysis on the prediction of the performance (value function)
of certain sequence of actions (policy) when an agent operates a
Markov decision process with large state-space. When the states are
represented by features and the value function is linearly approxi-
mated, our analysis reveals a new relationship between two common
cost functions used to obtain the optimal approximation. In addition,
this analysis allows us to propose an efficient adaptive algorithm that
provides an unbiased linear estimate. The performance of the pro-
posed algorithm is illustrated by simulation, showing competitive
results when compared with the state-of-the-art solutions.

Index Terms— Approximate dynamic programming, Linear
value function approximation, Mean squared Bellman Error, Mean
squared projected Bellman Error, Reinforcement Learning.

1. INTRODUCCTION

In communications and signal processing, many problems could be
represented as Markov-decision-processes (MDP), in which an agent
operates in an environment described by a set of states, the corre-
sponding state-transition probabilities and some associated cost or
rewards representing how much desirable for an agent is to be in
each of the states [1, 2]. Examples of applications range from ac-
tive monitoring problems (e.g., a wireless sensor networks aiming to
keep a certain parameter in a certain range) to networking (e.g., call
admission control, congestion avoidance and routing [3]). In these
real world domains the number of possible states of the system is
usually very large, turning the computation of the exact solution pro-
hibitive; nevertheless an alternative formulation in terms of features
that represent the states allows for efficient approximate solutions
in the form of parametric representation of the value function. In
particular, linear approximation [4, 1] has been the preferred option
because of its simplicity, efficiency and good performance when the
features are carefully chosen.
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One of the benefits of using parametric approximation is that
the problem can be posed as finding the optimal parameter that min-
imizes some cost function. Also it is of high interest how to im-
plement the optimization of these cost functions guaranteeing fast
and unbiased implementations. Several approaches in the literature
have grouped the implementations on those where the MDP model
is fully known and the ones where we have to infer this model by
interaction with the environment (sampled-based implementations).
The discussion on which cost function is better appears in several
works [4], [5]. The most common approaches include the mean
squared error (MSE), the mean squared Bellman error (MSBE) and
the mean squared projected Bellman error (MSPBE). Not all of them
are feasible in any scenario. MSE needs knowledge about the real
value function and from there the linear approximation is straight-
forward through a projection, while MSBE and MSPBE make the
linear approximation match the Bellman equation without any need
of the value function. Different implementations of the optimization
of these cost functions have been proposed in the literature (see, e.g.,
[4] and [6] and references therein) and their performance have been
studied [7, 8]. Mixed linear MSBE and MSPBE strategies are also
available in the literature [9], leading to of hybrid algorithms that
may benefit from both criteria.

Setting the cost functions from where to start the value function
approximation is the best way to provide a unified view for the dif-
ferent implementations in the literature [10]. Precisely this unified
view is one of the aims of this paper. The motivation for that is
that if we are able to get a fixed point or closed form solution for
the optimization of the cost function, further to provide a solution
to that equation, we can also propose iterative approaches based on
that equation such as stochastic gradient descent or iterative solving
of the fixed point equation.

Similarly to what was done in [5] with MSE and MSBE and
their fixed point solutions named respectively Temporal Difference
(TD) and Bellman residual (BR), here we provide a unified view of
MSPBE and MSBE through a projection tool. Therefore our work
would extend what was done in [5] by also analysing MSPBE and
we will show that the optimization of both cost functions, MSBE
and MSPBE, lead to a unique fixed point equation that just uses a
parametrization of a oblique projection of the Bellman equation in
the feature space. Furthermore it will be shown that proposing any it-
erative or sampled based method of this unified fixed point equation
leads to many well known earlier method such as standard least-
squares recursive approaches [1], and gradient based methods. In
[11, 6] adaptive implementations for optimizing the MSPBE were
proposed. Interestingly, it also noticed that a linear prediction of the
conditioned expected Bellman error makes the instantaneous gradi-



ent of the MSBE identical to the instantaneous stochastic approx-
imation of the gradient of the MSPBE. A few earlier works have
highlighted this equivalence, but without entering in much detail
(see e.g., [12]). Here we aim to clarify this relationship between the
MSBE and the MSBPE and derive a new variation of the stochastic
approximation algorithms introduced in [11] with improved perfor-
mance.

2. VALUE FUNCTION APPROXIMATION

We consider the standard reinforcement learning framework where
an agent learns by interaction with the environment. The envi-
ronment is modelled by a MDP with a finite number of states
s € S and actions a € A. At time ¢, the transition probabil-
ity from one state s to state s’, when taking action a is given by
Pl = P{si11 = §'|st = s,ar = a} and the reward obtained at
this point is R%, = E{R|s; = s,st41 = s',a: = a}. We as-
sume that the agent follows a policy 7 that determines his behaviour
through the probability of taking action a when being at state s,
m(s,a) = P{as = alst = s}, and we also assume that the state
process is an irreducible and aperiodic Markov chain with station-
ary distribution induced by the policy 7 and given by the vector

= [u(1),...,u(JS])]". Then the value function V™ (s) is the
expected accumulated reward that an agent would receive, when it
starts from state s and follows policy 7:

V™(s)=E {Z’ykRHHst = s}
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which can be expanded in vector form, as
VT=r"4+4P"V" =T (V") )

This equation is the well-known Bellman equation and 7 (-) is the
so named Bellman operator [1]. From now on the dependence with
policy 7 will be dropped for the sake of clarity.

2.1. Linear Value function approximation

The value function V'(s) can be linearly approximated with the
help of parameter : Vp (s) = ¢* (s)8, where the feature vector
@(s) € R is defined in a reduced space dimension |F| < |S].
The approximation subspace Sg is the subspace spanned by & =

[¢" (s1)... qu(s‘S‘)]T: Sa {<I>X|x € RV } Hence, the
value function approximation is given in vector form by
¢" (s1)
Vo = 5 0 =®0 3)
¢" (s)s))

The optimal linear approximation to the value function V, with re-
spect to the weighted Euclidean norm ||-||Z, in the subspace Sa, is

obtained from minimizing the MSE between the approximate value
function and the true value function defined as:

Tuse(0) = ||V — 26|z )
where 2 = diag (u) is a diagonal positive definite matrix and
Ix|Z = x"Ex = >, p(i)x}. If matrix & has linearly indepen-

dent columns the solution is unique and is given by the projection of
the value function with respect to the given weighted norm, denoted

by [z = ® (®7E®) ' ®7E, such that
P00 =11=V ®)
It should be noticed that the value function V will be rarely available

for parameter estimation. Thus, alternative cost functions have to be
considered, like the MSBE or the MSPBE.

2.1.1. Mean Squared Bellman Error

The solution to the Bellman equation in the subspace S¢ has been
proposed in the literature as an indirect approach to obtain parameter
0. Thus we minimize the cost function defined as the mean squared
Bellman error:
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In order to minimize (6) we obtain its gradient:

VIusee(0) = — (I—-P)®) 2+ (P -1)®0) (1)

From (7) we have:
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Following a similar approach than in [5], a more compact formu-

lation can be derived if we define the projection with a different
weighted norm (i.e., an oblique projection):
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Note that (9) allows for a fixed point equation representation of the
optimal parameter solution. As it will be shown below, this is key
for the unified treatment of the MSBE and MSPBE that we propose
in this paper.

2.1.2. Mean Squared Projected Bellman Error

While the previous approach aims to find a vector lying in the sub-
space S that satisfies the Bellman equation, another alternative is
to first place the Bellman solution in the subspace by means of a pro-
jection and then to compute the closest vector by minimizing the so
called mean squared projected Bellman error.

Tuisesi(0) = |[T=T (26) — 6|2 (10)
= (T (®0) — ®0)" IILEII= (T (®6) — ®6)
Given that [IZE= = (H@EHE)T = Ellx we can optimize (10),
obtaining:
V Juseee(0) = — (I —~+P) ‘I’)T Ell=z (r + (WP — I) ®0)
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From (11) we can obtain:
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And from (12) MSPBE fixed point solution can be written as:
®0 = H(I—WHEP)TET((I)G) 13)

It should be noted the similarity of the MSBE solution, in (9), and
the solution for the MSPBE, in (13), where the only difference is that
in the first case we work directly with P and in the second case with
the projected version of this matrix II=P.

2.2. Weighted norm to model interaction with the environment

The weighted norm defined in (4) plays a fundamental role in the
definition of average values of any of the parameters under study
in the MDP. We have defined the elements within = diagonal as
the visitation probability 4 (s) for each state s. Then we have the
following equivalences [6]:
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where e (0) is a random variable that models the error between the
value function approximation and the Bellman equation; ¢ and ¢’
are random variables that take values in the feature vector space ¢(s)
with s € S. ¢ represents the “present” feature while ¢’ represents
the “future” feature. Given that in the Bellman equation in (2), the
matrix P helps to obtain the expected accumulated future reward,
once the immediate reward r has been obtained, similarly, in the
feature space the matrix equivalence obtained in (15) can be inter-
preted as the feature space @' = P® after transition to the future
states.

We will use the equivalence between the expected values (14)-
(17) and their matrix forms to derive sample-based stochastic ap-
proximations of the fixed point equations and gradients introduced
in Section 2, as well as to highlight some degree of equivalence be-
tween the MSBE and the MSPBE.

2.3. MSBE and MSPBE equivalence under linear prediction of
features

When the MDP model is fully known, there would be no need for
an estimation of the future features given that ' = P® would be
fully known. However, in many cases [12] it has been proposed to
use the present feature space to make a linear prediction of the future
features ¢’ ~ Ps¢. This fact is of relevance when it is applied to
sampled-based implementations [6] where the environment model is
learnt by means of agent interactions with the environment.

If the linear predictor is defined to minimize the MSE between

@' and P3¢, then:
- {¢’¢>T} E {¢¢>T}7 - Pa)" =@ (fI)TEi)) -
(18)

In the feature space we would have the following approximation:
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If we apply this equivalence to the fixed point equation (9), derived
from the MSBE, it can be easily shown that projection Il ;__ py7 =
turns into the projection Il ;_ .,y _pyrz Which was used for the fixed
point equation representatlon of the MSPBE given by (13). It should
be noted though, that this equivalence between MSBE and MSPBE
is only valid in those scenarios where it makes sense to apply the
linear prediction, i.e. sample-based implementations of MSBE an
MSPBE solutions.

3. ADAPTIVE IMPLEMENTATIONS

In this section we derive unified solutions for minimizing the MSBE
and the MSPBE introduced in Section 2 in an adaptive manner:
namely, a gradient-descent like algorithm and a iterative fixed-point
equation. It should be noted that still the iterative methods do not
suffice to get the value function approximation in those cases where
the model of the environment is not fully avalable, thus the agents
are able to learn directly from the stream of samples. We will show
along this section, that both iterative approaches can be implemented
following the general scheme in Figure 1.
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Fig. 1. General adaptive scheme for value function estimation.

3.1. Gradient-based iterative implementation

Vector parameter estimation through gradient descent on a arbitrary
cost function can be defined:

0i41—0: = VT (0;) = ®"B'D (86, — T (86,)) 0)
= a;®"B" De (6:)



where we have defined the error e (6:) between the value function
approximation and the Bellman equation, o is the step-size for the
gradient descent and:

¢ B = (I —vP) and D = = in the MSBE solution (see (7)).

¢ B = (I—+P) and D = Ellz in the MSPBE solution (see
(1D).

Following the equivalences in (14)-(17), the gradients can be rewrit-
ten as follows:

Vsee(0) = E{e (0) ¢} —1E {e(8) ¢'} @an

Ve (0) = E{e (0) 9} —1E{ 06" JE{00” )} E{e(0) 6}

(22

If we used the linear predictor defined in (19) we would have that
VIusese(0) = V Jusee(0) and therefore a unified view of both
approaches. Thus for sample-based implementations we will focus
on MSPBE implementations by means of (22).

3.1.1. LPBR implementation

By interaction with the environment, at time step ¢ the agent receives
data samples in the form of the triplets (¢, 7+, ¢} ), where ¢, and ¢
are the feature associated to state s; and s;11 respectively, r; is the
immediate value reward obtained and so we can compute e; (6;) =
@f0r — (1o + 7" 04).

The agent can use these samples to estimate the expected values
in (22) differently. Our proposed algorithm for the iteration is to
upgrade the mean estimates at each time sample as follows:

t
E{¢¢"}~ Rou= > et 23)

t
E {¢/¢T} ~ Roror = t% kzzoqs’kqb}f (24)
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141 =
which should be implemented in an efficient recursive manner. And

finally define the iterative linear prediction Bellman residual (LPBR)
algorithm:

0011 =00+ oy (em - yﬁé/q,,tfz;}teq,,t) (26)

3.1.2. TDC implementation [6]

If we approximate all the averages in (22) by its instantaneous values
we obtain the so called TDC algorithm in [6]:

Oi11 =0+ (€t¢t - 7¢;¢tth) 27

in which wy is a long term estimate computed in a slower time scale
as:

wy = wy—1 + B (et—l - ¢£1wt—l) o3 (28)

3.2. Fixed-point Iterative implementation

Closed form formulation in terms of the projection of the Bellman
equation such as those obtained in (5), (9) or (13) would allow a
fixed point iterative implementation. Focusing on the MSE approach
in (5), we have a least squares solution as the one proposed in [1]:

0:41 = arg min ||T (®6;) — 0|2 (29)
6cR7|

The iterative solution:
PO =1I=T ($O:) (30)

that can be formulated as follows:
-1
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3.2.1. Sample-based fixed point iterative implementation

Similarly to what was done in section 3.1, the correction term in (31)
can be rewritten as follows:

0i11 =0 —E{¢)¢T}71E{€ (0) 9} (32)

The terms E {d)qu}_l and E {e (08) ¢} could be estimated
from the triplet (¢,, 7+, ¢}). Different approaches are available in
the literature, one of them is the RLSTD implementation [1, 13].

4. SIMULATIONS

We study the performance of the proposed LPBR algorithm by sim-
ulation in a classical problem and compare it with other proposals in
the literature such as RLSTD algorithm [13] or TDC algorithm [6].

Our MDP is a Markov chain of 7 states [2], with initial state in
the middle of the chain (s3), and with the two ends (so and sg) be-
ing terminal, absorbing states. There are only two possible actions,
going left or right, which make the agent transit to the previous or
next state in the chain, respectively (see Figure 2). Our goal is to
predict the approximated state-value function for an uniform target
policy (i.e., at every state the agent can choose left or right with equal
probability). The figure of merit is the MSPBE.

o O )

Fig. 2. State diagram of the random walk problem.

For the simulations the agent always advances in the direction
it has moved, so the transition probabilities are P(s;41|s;, right) =
1, P(s;—1]ss,left) = 1 and zero for any other case, except for the
absorbing states for which P(so|so) = P(ss|ss) = 1. We choose
a set of 2-dimensional handcrafted features to represent the state,
which are ¢(s0) = [0,0], ¢(s1) = [1,0]7, ¢p(s2) = [5,0]",
d(s3) = 5,517, d(s4) = 0,317, ¢(s5) = [0,1] ", and ¢(s6) =
[0,0] . Step-sizes for gradient descent is constant a; = 0.1 for all
the algorithms and 8; = 0.01 in (28). The discount factor is vy = 1.



Some performance results are given in Figures 3.a and 3.b where
we see that the proposed LPBR is very competitive, even with re-
spect to RLSTD which has similar complexity. We also appreci-
ate that TDC shows more variance and bias than LPBR and RL-
STD. This is natural as, though TDC approximates a long-term esti-
mate of two of the expected values in (28), it still approximates the
other statistics in (22) instantaneously. RLSTD is more accurate than
TDC, and the proposed LPBR is even better. Note that, though the
per-time complexity is O(]|F|) in these algorithms (where | F]| is the
dimension of the features), the less bias and variance of RLSTD and
LPBR comes at the cost of more memory requirements, O(|F|?),
which contrasts with the linear memory requirements of of TDC.
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Fig. 3. Random walk in a Markov chain. (a) Evolution of the exact
(20) and stochastic approximations (Algorithm 6 in [13], (27) and
(26)) of the gradient, and (b) Error curves.

5. CONCLUSIONS AND FUTURE WORK

We have presented a fixed point solution for the two typical cost
functions for linear value prediction in the literature, providing a pro-
jection tool that shows the equivalence of the MSPBE and the MSBE
with linear prediction of future features. From this analysis, we de-
rived an efficient adaptive implementation that provides an unbiased
linear estimate, showing competitive results through simulation in a
classical domain.

This same approach could be extended in other directions, such
as the multi-step TD(\) family of algorithms [2], off-policy itera-
tion and even distributed adaptive implementations. Moreover, so
far we have only considered the policy evaluation problem, in which
an agent predicts the goodness of a certain policy, a natural exten-
sion of our work would be to extend the same methodology to the
control problem, using features that represent the state-action pairs
and including a policy-update step.
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