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ABSTRACT 
 
As the field of bioimage informatics matures, the issue of 
the validation of image reconstruction algorithms and the 
definition of proper performance criteria becomes more 
pressing. In this work, we discuss benchmarking aspects of 
fluorescence microscopy quantitative tools. We point out the 
importance of generating realistic datasets and describe our 
approach to this task. We rely on our experience and present 
arguments in favor of the use of 3D continuous-domain 
models of biological structures for simulating bioimaging 
datasets. We also present physically-realistic models of 
image formation that that are reasonably efficiently to 
implement. 
 

Index Terms— Bioimage informatics, fluorescence 
microscopy, benchmarking, simulated datastets 
 

1. INTRODUCTION 
 
Advanced fluorescence microscopy for high-resolution 
imaging has been increasingly relying on quantitative tools. 
The ongoing effort in developing new and improved 
imaging methods is complemented by new mathematical 
approaches to image reconstruction and the emergence of 
fast and accurate software packages [1]. The net effect is an 
increasing intertwining between imaging modality and 
numerical reconstruction methods. The quality of the 
algorithmic components is decisive for extracting 
meaningful biological information and for leading to 
reproducible results. 

Bioimaging introduces a plethora of imaging 
modalities, and the available software modules are 
proportionally diverse. Every software tool is developed for 
a particular biological need and made available to the 
research community at later stages. The performance of 
such algorithms, their applicability to similar imaging 
modalities, as well as their usability require further 
attention. Another important issue is software design and 
maintenance [2], which have immediate impact on 
reproducible research. 

Grand software challenges have become an important 
framework for addressing such situations. They have been 
providing a common ground for evaluating algorithms in 

many other fields of engineering such as medical image 
processing [3] (presented to MICCAI), audio processing and 
video. Comparative evaluations are common in the field of 
biometric signal processing; e.g., the Face Recognition 
Grand Challenge [4]. For some applications, such 
comparative evaluations are a prerequisite for testing new 
algorithms. This is the case for stereo correspondence of two 
frames [5]. Such contests allow users to quickly know the 
state-of-art of a scientific field while developers of 
computational tools have a standardized protocol for 
comparing their algorithms. Yet, such challenges are not 
common practice for biological imaging applications. One 
possible reason is the lack of clear and agreed quantitative 
criteria for the image analysis task.  

Following two recent biomicroscopy challenges— 
particle tracking and segmentation of neuronal structures in 
EM stacks—we introduce and analyze in this work the key 
aspects that make biomicroscopy challenges unique. We 
report on our experience in organizing two such 
challenges— localization microscopy1 and deconvolution 
microscopy2—and point out the obstacles that need to be 
overcome in order to be successful. Localization microscopy 
and deconvolution microscopy are two computational 
approaches for improving the resolution of fluorescence 
micrographs. The final reconstructed images are highly 
dependent on the applied algorithm and on appropriate 
choice of parameters. In addition, a good characterization of 
the forward model and the acquisition device is required. 

In the sequel, we describe our approach to datasets 
generation and to algorithm assessment and provide 
concrete examples. We argue that specifying a 3D 
continuous-domain model is more advantageous for 
simulating biological structures than considering discrete-
domain phantoms [6-9], and that a realistic forward model 
does not necessarily impose computational limitations. 

 
2. REFERENCE DATASETS 

 
We point out two difficulties in establishing benchmark 
datasets in the field of biomicroscopy. The first arises from 
the plethora of imaging modalities, which does not allow the 

                                                
1 http://bigwww.epfl.ch/smlm/challenge/ 
2 http://bigwww.epfl.ch/deconvolution/challenge/ 

EUSIPCO 2013 1569744665

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

 

 

community to rely on a small number of datasets. These 
imaging modalities correspond to several physical quantities 
(number of photons, phase difference, life time) and result 
in multi-dimensional datasets that include spatial, temporal 
and spectral information. Another difficulty arises from the 
lack of ground-truth information, which is a key component 
for algorithm validation and evaluation.  

Biologists and microscopy practitioners prefer real 
data. But from an algorithm developer point of view, 
simulated data is a necessary step in the development and 
the assessment of software. The great potential of simulated 
datasets has already been demonstrated for the task of 
segmentation in Drelie et al. [10]. Since there is also 
considerable value in handling real imagery, we suggest 
having the following two types of datasets: 
• real data with a-priori geometrical information about 

the biological structure (diameter, length, rotation, 
distances, symmetry, intersections); 

• realistic simulated data of continuously-defined 
objects. 
Within the context of simulated data, we bring up three 

aspects that are common to all imaging modalities: 1) 
continuous-domain description of the biological structure, 2) 
forward model characterization that take the optics and the 
noise sources into account, and 3) practical considerations 
about the data.  
 
2.1. Continuous-domain description of biological structures 
 
Sampling is an integral part of biomicroscopy, and we 
suggest describing the biological structure over the 
continuum.  Doing so provides the ability to simulate 
different marker densities, to consider different 
magnification factors and CCD pixel sizes, to consider 
different lifetime models of the fluorescent molecules, and 
to conveniently include a drift model. Geometrical 
structures, such filaments, radially symmetric objects, and 
amorphous objects, are conveniently defined by splines; and 
we use results from spline theory for describing these 3D 
structures in a computationally efficient manner. The 
biological structure can then be generated at any scale, and 
visualized using several rendering methods (Fig. 1). 
 
2.2. Forward model characterization 
 
The forward model is very important in image 
reconstruction and inverse problem formulations, and 
biomicroscopy is no exception in this regard. A realistic 
point-spread function (PSF) model and noise sources 
characterization will result in realistic simulated data. As in 
many other bio-imaging algorithms (denoising, 
deconvolution and particle localization), the application of 
the forward model requires repeated calculations of the PSF, 
as well. This, in turn, introduces a computational complexity 
aspect of the datasets generation task. 

The Gaussian function provides a reasonable 
approximation of the main lobe of the Airy pattern while 
introducing relatively low computational complexity. 

Such approximation, however, discards the side-lobes 
of the PSF, which are particularly important in 3-D PSF 
modeling. The trade-off between choosing realistic and 
simplified PSF models is execution time, and we suggest to 
overcome that by using the scalar Gibson and Lanni PSF 
model. It accounts for the refractive index mismatch that is 
often present in biomicroscopy imaging and it based on 
parameters that are readily available for the microscopy 
practitioner. A computationally effective implementation of 
the Gibson and Lanni model was recently introduced in [13] 
within the context of localization microscopy, and we 
suggest to utilize it for reference datasets, as well. In order 
to further accelerate the PSF evaluation, we prepare a 
lookup table at a resolution of 2 nm in the z axis and for 
each set of acquisition parameters. We then apply linear 
interpolation when required. 

 Noise sources and perturbations may include: shot 
noise for small photons count; EMCCD and read-out noise 
models; quantization; file storage; background auto-
fluorescence; sample drift for long experiments; inaccurate 
values of numerical apertures, magnification and refractive 
indices. The random nature of the emission process of the 
fluorophore should be taken into account, as well. 
 
2.3. Practical issues 
 
Biomicroscopy data is often very large in terms of storage. 
This, in turn, limits the accessibility of such datasets over 
the Internet. The simulated dataset has to be then of a 
moderate size, say 100MB. It is also important that datasets 
will deliver metadata information that includes acquisition 
and other relevant parameters, which will make the 
simulation reproducible. This will allow for relatively 
simple adjustments when a new imaging modality is 
introduced. 
 

3. BENCHMARKING EXAMPLES 
 
3.1. Assessments 
 
The simulated data should include an ensemble of scenarios 
that test the performance of the algorithms for several 
criteria.  

The criteria should include quantitative and qualitative 
measures that are important for both the algorithm developer 
and the end-user, e.g. accuracy, exactitude, fidelity, 
computational time, visual inspection. The trade off between 
the various criteria is important to analyze, as well. 

From an end-user point of view, the use of the 
algorithm should be as simple as possible and intuitive. 
Parameters have to be clearly defined. Installation should be 
effortless, as well. These features define the software 
usability [2], which is also interesting to evaluate. 
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3.2. Localization Microscopy  
 
Super-resolution fluorescence microscopy is an emerging 
field that allows one to study the living cell at the nanometer 
scale. It overcomes the classical diffraction limit of Abbe, 
yielding images of biological structures that have lateral 
resolution down to 10 nm.  

One of the most promising techniques in this field is 
single-molecule localization. It was originally introduced by 
three independent groups, giving rise to several acronyms: 
PALM (photo-activated localization), STORM (stochastic 
optical reconstruction microscopy) and F-PALM. Unlike 
classical fluorescence microscopy, however, the acquired 
data cannot be visualized directly and there is a need for a 
localization algorithm that determines the precise location of 
the blinking single-molecules. The algorithmic aspects of 
this method are therefore extremely important, and this is 
the focus of the localization microscopy challenge we have 
conducted at the ISBI 3013 conference. 

To this aim, we generated ground-truth synthetic 
datasets that are inspired by the tubulin biological structure. 
We define a tubulin over the continuum and create a 
biological structure that is composed of several tubulins. 
Each tubulin is randomly positioned in 3D space and at 
different orientations. We then randomly marked them with 
fluorophores, as shown in Figure 1.  

The acquired data is composed of consecutive frames 
that consist of a sparse set of excited fluorophores each. We 
randomly excite the fluorophores and assign a random 
lifetime model to each one of them. The fluorophores emit a 
random quantity of photons that are spatially spread by the 
3D Gibson and Lanni PSF (we also the have the option of 
simulating a 3D defocussed Gaussian PSF). The noise 
sources we consider are: non-homogenous excitation 
intensity over the field of view, background scatter noise, 
auto-fluorescence, EMCCD multiplicative noise, read-out 
noise and dark pixels. For a specified frame rate, our 
simulator computes thousands of synthetic images that 
contain millions of active fluorophores. The computation is 
carried out at a high resolution of 5 nm/pixel and the images 
are then down-sampled to the camera resolution, which is 
typically 150 nm/pixel. The simulated data further includes 
acquisition perturbations such as the camera gain, saturation 
and quantization, as well as the file-format. The ground-
truth data consists of the fluorophores positions and 
rendering of the data at high resolution. 

To determine the rate of detection, standard statistical 
methods are used to compare two sets of positions: Jaccard 
index, F-Score, precision and recall. The accuracy is 
computed by evaluating the RMSE of the localization 
distance error. We also evaluate the algorithm run-time and 
the software usability. In addition, we provide visual 
comparison of the reconstructed data.  

 

 

Figure 1. Simulated network of microtubules: these 
structures of 25 nm in diameter are continuously defined by 
B-spline functions. Part of the network of tubulins is shown 
here as a volume rendering for illustration purpose only 
(top-left); super-resolution PALM-type data that originates 
from the simulated network, only few fluorophores are 
activated in a frame (top-right); a single frame of the 
PALM-type sequence with fluorescent molecules and auto-
fluorescent background (bottom-right); reconstructed 
images at 150 and 2 nm/pixel (bottom-left). 

 
3.3. 3D Deconvolution Microscopy  
 
The aim of the 3D Deconvolution Microscopy Challenge 
was to benchmark existing deconvolution algorithms, to 
stimulate the development of new methods as well as 
creating a network of deconvolution-software providers 
originating from distinct communities. Indeed, these 
providers have traditionally been segmented into three very 
different categories: academic developers, creators of 
free/open-source solutions and commercial software 
companies. We also spent a significant effort on making the 
conditions of the challenge reasonably realistic, in terms of 
data size, measurement model and processing pipeline. 

The datasets for this challenge were computer-
generated, with an effort to reproduce various resolution-
critical features that are typically observed in cellular 
biology. Each class of features (e.g., filaments, cellular 
membrane) was allocated a specific channel. 

In addition we simulated a complete image-acquisition 
pipeline, with rarely-combined realistic characteristics such 
as a Gibson and Lanni PSF model, Toeplitz boundary 
conditions, a Poisson+Gaussian noise mixture and 
quantization effects. Figure 2 shows maximum-intensity 
projections of the resulting datasets that were distributed to 
the participants, as well as deconvolution results obtained 
with the well-established Richardson-Lucy algorithm.  
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Figure 2: Maximum-intensity projections of two channels of 
the data used for the deconvolution challenge. Top: 
computer-generated phantom with simulated blurring and 
noise. Bottom: deconvolution result obtained with the 
Richardson-Lucy algorithm. 
 

Finally we chose a number of standard and more 
advanced performance metrics to assess the results 
submitted by the participants. These metrics included for 
example the signal-to-noise ratio (SNR), the structure-
similarity index (SSIM), a wavelet-domain sparsity 
measure, as well as total-variation and Hessian-based 
metrics. 
 

4. DISCUSSION 
 

Biomicroscopy benchmarking introduces several challenges 
such as the generation of realistic datasets in a 
computationally efficient manner and the choice of an 
acceptable set of performance metrics. The localization 
microscopy and the 3D deconvolution challenges, for 
example, addressed these aspects by describing biological 
structures in the continuum and by focusing on quantitative 
and qualitative metrics that are important for both the 
algorithm developers and the end-users. Special attention 
was given to the forward model which includes the PSF, the 
noise sources and the life-time of the fluorophores. Similar 
to other engineering fields, we expect biomicroscopy 
challenges to stimulate the development of better 
algorithms. Such a periodic effort will help in defining 
validation protocols, promote interdisciplinary dialogue and 
emphasize on the importance of quantitative tools for 
biomicroscopy.  

However, innovation should not be discouraged by 
over-standardization that will prevent researchers from 
publishing new original solutions, which do not completely 
fit into the established model. The outcomes of such 
challenges will have great value for bioimaging 
communities such as the Open Bio Image Alliance.3 
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