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ABSTRACT

Blotches are artifacts that contaminate old films and cause the

loss of some information in the film. Their detection is re-

quired prior to any restoration. The goal of this paper is to

reduce the false alarm rate of the detection. By assuming that

blotches correspond to local illumination variations between

the degraded frame and its surrounding ones, the novelty of

the approach we propose is threefold. Firstly, an appropriate

photometric parametric model is adopted. Secondly, a motion

analysis involving a robust adaptive cross-correlation measure

is used to locally measure the illumination variation. Thirdly,

the extension to color sequences is performed. Experimental

evaluation shows the efficiency of the proposed preprocess-

ing.

Index Terms— blotch detection, photometric parametric

model, motion estimation, outliers.

1. INTRODUCTION

Blotches are artifacts that contaminate old archived films due

to bad environmental conditions (humidity, dust . . . ) or to the

loss of the gelatin covering the film. Consequently, blotches

randomly appear in the film as compact stains (resulting from

the accumulation of dust) with any shape, size and color. It

is mandatory to restore this cultural heritage given its impor-

tance. However, the huge amount of degraded films makes

difficult a manual restoration. Semi-automatic restoration

techniques are preferred: they require a prior digitization of

the films and they generally follow two steps. The defects are

firstly detected in the degraded images of the sequence. Then,

the supposed contaminated areas are corrected by estimating

their original content. In this work, we focus on the detection

stage. Note that most of the reported detectors tend to ex-

ploit the randomness of the blotches [1, 2]. Indeed, blotches

produce a temporal discontinuity since they rarely appear at

the same position in two successive images. Hence, the past

and the next images of the current supposed degraded image

are usually used as references to identify blotches. However,

moving objects also produce temporal discontinuities. This is

the reason why most of the reported detectors compensate the

forward and backward motions to discard the temporal dis-

continuities due to object motions. The detection stage is of

a crucial importance in the restoration chain in the sense that

it determines which regions of a supposed degraded image

should be corrected. More precisely, false alarm rates should

be low in order to preserve non-corrupted regions. Several

works have been dedicated to the problem of reducing the

false alarm rate in digitized versions of old films [1, 3–5]. In

this paper, we propose a preprocessing step that preselects

suspicious regions and we extend our previous work [5]. Our

contribution is threefold. Firstly, a parametric photometric

model is considered to locate suspicious regions. Secondly,

a novel robust and adaptive matching criterion is used during

the motion estimation procedure. Finally, the preprocessing

is generalized to the case of color sequences. This paper is

organized as follows. In Section 2, the reported works for

reducing false alarms are described. Then, the proposed pre-

processing method is detailed in Section 3. The experimental

evaluation is presented in Section 4. Some conclusions and

perspectives are drawn in Section 5.

2. STATE-OF-ART OF PREPROCESSING METHODS

Likewise most of the reported methods, we first assume that

the film is black-and-white: after its digitization, a sequence

of luminance images of size L1 × L2 at time k is obtained.

The goal is to locate the blotches in the current image I(k)

based on the past image I(k−1) and the next one I(k+1). As

previously mentioned, forward and backward Motion Com-

pensation (MC) is performed in order to reduce the temporal

discontinuities due to moving objects. However, conventional

MC models assume that pixels have constant intensities along

their trajectories. This is no longer valid in presence of occlu-

sions, or local illumination variation or even blotches. The

impact of such mismatch on blotch detection performance

could be handled in two ways: after [1, 4] or prior the de-

tector [3, 5]. Preprocessing-based methods are preferred for

their relatively less computational complexity. For instance,

in [3], the anisotropic continuity of a pixel trajectory is an-

alyzed among 25 different spatio-temporal directions using

EUSIPCO 2013 1569744655
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a direction cost. The decision whether or not the underly-

ing direction involves corrupted pixels is taken after a train-

ing phase. A limitation of this approach is that it does not

account for the spatial coherency of blotches, and the noise

in the image can be assimilated to blotches. In a previous

work [5], we have proposed a preprocessing to identify in

the supposed degraded image I(k), the regions that are more

likely to be blotched. A conventional blotch detection tech-

nique is then applied only on those regions. Our key idea was

to consider a blotch as a result of a local illumination vari-

ation between the supposed degraded image and the one to

be motion-compensated. More precisely, our rationale was

to retain an affine motion model that involves illumination

parameters and which is robust to the presence of a local il-

lumination variation between both images [6]. This model is

defined at each spatial position r by:

I(k)(r) = h(k−1,k)(r)I(k−1)(r+ d(k−1,k)(r)) + b(k−1,k)(r)
(1)

where d(k−1,k)(r) is the displacement of the pixel at the posi-

tion r from I(k−1) to I(k), h(k−1,k) is an illumination coeffi-

cient that reflects the local brightness variation between both

images, and b(k−1,k) allows to compensate the estimation er-

rors of the model parameters. Since the model is local, the

three parameters are blockwise estimated. Furthermore, to

estimate d(k−1,k)(r), the Block-Matching Algorithm (BMA)

is used, the mean squared error being the matching criterion.

After intensive experiments, we have noted that h(k−1,k) has

an atypical behavior in corrupted blocks. Therefore, we have

considered that the outlier values of h(k−1,k) are likely re-

lated to blotched blocks. To locate such atypical values, we

have resorted to a statistical outlier test. It is worth noting that

most of the reported statistical tests require the normality of

the data, a prior step of Gaussianization is carried out thanks

to the Box-Cox transform [7]. Among the various statistical

outlier tests [8,9], we have retained the Minimum Covariance

Determinant (MCD) test for its efficiency and relatively low

computational complexity [8]. The same procedure is also

applied to detect suspicious regions relatively to I(k+1). Sus-

picious regions correspond to the regions judged corrupted

relatively to both reference images I(k−1) and I(k+1). False

alarm rates generated by some conventional blotch detectors

(such as the SROD detector [1]) are reduced thanks to this

novel preprocessing. In this paper, we propose to further im-

prove the detection rate through a novel preprocessing.

3. PROPOSED METHOD

3.1. Photometric model

We have noted that some blocks judged as suspicious, corre-

spond in fact to an illumination variation that is not due to

blotches. Indeed, several intensity variation sources are pos-

sible such as lighting conditions. This has motivated us to im-

prove the preprocessing by resorting to a model which is not

only robust to the illumination variations but also accounts

for real photometric parameters. Moreover, we also suggest

to generalize our contribution to color sequences in contrast to

the works reported so far. From now on, I(k) denotes an RGB

image whose color components are denoted I
(k)
R , I

(k)
G and,

I
(k)
B . Among the proposed photometric models [10, 11], we

retain the one described in [11] under the assumption of Lam-

bertian reflectances. It consists in transforming (I
(k)
R , I

(k)
G ,

I
(k)
B ) into (Ī

(k)
R , Ī

(k)
G , Ī

(k)
B ) as follows:

Ī(k)c (r) = κ(r).sc.
(

I(k)c (r)
)γ

, c = R,G,B (2)

where

• r is the spatial position;

• κ(·) is a brightness parameter that depends on the local

lighting geometry;

• sc is a scaling factor corresponding to the channel c.

Indeed, by fixing the lighting geometry and changing

the lighting color, the global change of the illumination

response at pixel r is linear relatively to the original

intensity I
(k)
c (r) [11].

• γ is a constant depending on the acquisition device. In

fact, during the acquisition stage, the image data is non-

linearly transformed before the storage process. This

non-linearity is modeled by a power function transfor-

mation (of exponent γ) of the raw sensor responses.

Based on (Ī
(k)
R , Ī

(k)
G , Ī

(k)
B ), we aim at locating the suspicious

regions concomitantly with the MC stage.

3.2. Detection of suspicious regions

Again, we apply the BMA but this time using the Adaptive

Normalized Cross-Correlation (ANCC) as matching crite-

rion. Recently proposed for stereo image matching [12], the

ANCC has the advantage of being robust to the illumination

variations. Indeed, the authors in [12] define the following

normalization steps to eliminate the illumination parameters:

• Firstly, a logarithm transform on the Ī
(k)
c provides compo-

nents linear with respect to the transform parameters :

log(Ī(k)c (r)) = log(κ(r)) + log(sc) + γ log(I(k)c (r)). (3)

• Secondly, a chromaticity normalization eliminates the illu-

mination parameter κ(·):

Ǐ(k)c (r) =
log(sc)
3
√
sRsGsB

+ γ log





I
(k)
c (r)

3

√

I
(k)
R (r)I

(k)
G (r)I

(k)
B (r)



 .

(4)

• The problem of the temporal aperture is handled by as-

signing a weight w
(k)
c (r) to each pixel r in the block B

(k)
c,(q,r)

2
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where (q, r) are the coordinates of the central pixel p. This

weight is evaluated relatively to p according to the bilateral

filter [13]:

w(k)
c (r) = exp

(

−‖r− p‖2
2σ2

d

− (I
(k)
c (r)− I

(k)
c (p))2

2σ2
s

)

(5)

where ‖ · ‖ is the Euclidean distance, σd and σs are scale

parameters.

• The global scale factors sc are eliminated by subtracting the

weighted sum value of the pixels from Ĭ
(k)
R , at each pixel r in

the block :

Ĩ(k)c (r) = Ǐ(k)c (r)−

∑

r∈B
(k)

c,(q,r)

w
(k)
c (r)I

(k)
c (r)

Z(p)
(6)

where Z(p) =
∑

r∈B
(k)

c,(q,r)

w
(k)
c (r) is a scaling constant.

Finally, in the resulting log-chromatic system, the ANCC

A
(k−1,k)
1,c between the block B

(k)
c,(q,r) and a candidate one

B
(k−1)
c,(q′,r′) is defined independently from the illumination pa-

rameters by:

A
(k−1,k)
1,c (q′, r′) =

∑

r∈B
(k)

c,(q,r)

Z1Z
′
1w

(k)
c (r)w

(k−1)
c (r′)

×Ĩ
(k)
c (r)Ĩ

(k−1)
c (r′)

(7)

where r′ = r+ (q − q′, r − r′)⊤ and,

Z1 = (
∑

r∈B
(k)

c,(q,r)

|w(k)
c (r)Ĩ(k)c (r)|2)−1/2 (8)

Z ′
1 = (

∑

r∈B
(k)

c,(q,r)

|w(k−1)
c (r′)Ĩ(k−1)

c (r′)|2)−1/2. (9)

In [12], it has been noted that the normalization in the log-

chromaticity system may decrease the ability of discrimi-

nating between the objects. To alleviate such drawback, it

has been suggested to combine the information in the log-

chromaticity system with that in the RGB system which

contains the original intensities. Therefore, a second expres-

sion A
(k−1,k)
2,c of the ANCC is firstly derived in a similar way

but only involving the initial RGB components:

A
(k−1,k)
2,c (q′, r′)) =

∑

r∈B
(k)

c,(q,r)

Z2Z
′
2w

(k)
c (r)w

(k−1)
c (r′)

×Î
(k)
c (r)Î

(k−1)
c (r′)

(10)

where Î
(k)
c (r) = I

(k)
c (r) −

∑

r∈B
(k)
c,(q,r)

w(k)
c (r)I(k)

c (r)

Z(p) and,

Z2 = (
∑

r∈B
(k)

c,(q,r)

|w(k)
c (r)Î(k)c (r)|2)−1/2 (11)

Z ′
2 = (

∑

r∈B
(k)

c,(q,r)

|w(k−1)
c (r′)Î(k−1)

c (r′)|2)−1/2 (12)

By averaging the two expressions of A
(k−1,k)
1,c and A

(k−1,k)
2,c

in (7) and (10), the final expression of the ANCC A(k−1,k) is

obtained as follows:

A(k−1,k)(q′, r′) = θ
∑

c

A
(k−1,k)
1,c (q′,r′)

3

+(1− θ)
∑

c

A
(k−1,k)
2,c (q′,r′)

3

(13)

where θ ∈ [0, 1] is a weighting coefficient and, c ∈ {R,G,B}.

Finally, the optimal block B
(k−1)
(q∗,r∗) is assigned to the current

block B
(k)
(q,r) if:

(q∗, r∗) = arg max
(q′,r′)

A(k−1,k)(q′, r′). (14)

The optimal value of the ANCC associated to B
(k)
(q,r) is de-

noted A∗(k−1,k)
(q,r) .

Once the motion is estimated according to the ANCC mea-

sure, our goal is to find the blocks of the current color images

at time k that are more likely to be blotched. We assume that

a blotch leads to a local illumination variation between both

images. We have noted that a contaminated block may have

an atypical value of ANCC compared to the values taken by

all the remaining blocks. The example depicted in Figure 1

shows that the ANCC values obtained in corrupted blocks are

atypical relatively to the neighboring blocks. The inspection

of the histogram of the set A(k−1,k) = {A∗(k−1,k)
(q,r) }(q,r) cor-

roborates the presence of outliers. Consequently, the problem

amounts to locate the blocks (q, r) associated to these out-

liers. In this respect, we resort to a statistical test for outlier

detection such as the MCD test after a Gaussianization proce-

dure as shown in the block-diagram of Figure 2.

The same detection procedure is applied by considering

the set A(k,k+1) generated with respect to color images at

time k + 1. Finally, only regions judged as suspicious with

both reference images are taken into account at the blotch de-

tection step. It is worth pointing out that any conventional

blotch detector can be used for this stage.

4. EXPERIMENTAL EVALUATION

To evaluate the performances of the novel preprocessing, two

sets of experiments are performed on extracts of the real de-

graded sequence “Les prix”. The goal of these experiments

is to firstly evaluate the efficiency of the proposed approach

relatively to the preprocessing proposed in [5]. Secondly,

we aim to evaluate the performances of the blotch detection

with/without the proposed preprocessing. Four state-of-art

blotch detectors SDIa [14], ROD [15], SROD [1] and a de-

tector based on the AutoRegressive (AR) model [14] are

3
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0.28

0.89

0.9

0.85

0.6 A(k−1,k)

Fig. 1. Distribution of the ANCC values. The first image

shows a real degraded image extracted from the “Afrique du

sud” sequence. The red blocks are contaminated and the cor-

responding values of ANCC is atypical relatively to the neigh-

boring blocks (indicated in blue). The second image is the

distribution of all values of ANCC where outlier values are

highlighted in red.

I(k+1)

I(k)
A(k,k+1) Statistical test

for outlier detection

I(k−1)

I(k)
Motion analysis

Gaussianization
A(k−1,k)

for outlier detection

Decision

Blotch

detection
positions

Blotch

ANCC measure

Gaussianization
Motion analysis

Statistical test

ANCC measure

Fig. 2. Block-diagram of the proposed approach.

used. For all experiments, ground truth dirt maps showing

the blotch positions in the considered sequences are obtained

thanks to a special infrared-film scanner 1. These maps show

dirt as darker areas set against a lighter background and bi-

nary ground truth masks are generated through a manual

thresholding such that the blotch positions appear as close

as possible to the human perception of these defects. The

detection performances are measured in terms of good detec-

tion rate Pc and false alarm rate Pf and they are visualized

thanks to the Receiver Operator Characteristic (ROC) curves

which plot Pc versus Pf . The detection performances of a

set of images are evaluated by calculating the mean of the

correct detection rates in one hand, and the mean of the false

alarm rates in the other hand, related to each supposed de-

graded image. The adjustments of the parameters related to

the ANCC measure are chosen according to the experiment

results shown in [12] and which are performed on Dolls and

Aloe images under different illuminations and different expo-

sures. For instance, the reported results show that the ANCC

measure is not so sensitive to the variation of σs, and the

value 3.8 was retained. The scale σd is dependent on the size

1Made available in http://stilie.free.fr/research.html

of the block used in the MC and again experiments show that

nearly a constant performance is obtained when the block size

is larger than 15 × 15. We retain this value in order to limit

the computational complexity of the ANCC computation and

the risk of the presence of multiple motion in a block. The

search area size is adjusted to 29 × 29. The parameter θ

determines the weighting between the log-chromaticity color

and the RGB color. The value θ = 0.7 is retained in our

experiments as it yields an appropriate level of compromise

between both color systems according to the results shown

in [12].

The threshold values used in SDIa vary from 1 to 120 by step

of 10. Three thresholds are required for the ROD detector.

Two thresholds are respectively set to 45 and 55. The third

one varies between 1 and 38, likewise the threshold used for

the SROD detector. The threshold used for the AR detector

varies between 1 and 38 by step of 7. In order to ensure

fair comparisons, and since SDIa, the AR based detector,

ROD and SROD detectors (without preprocessing) require a

prior step of motion compensation before the blotch detection

step is performed, the motion is estimated by considering the

affine motion model at a first time, and the ANCC measure

at a second time. As these detectors and the preprocess-

ing proposed in [5] assume that the analyzed images are

gray-level, the detection is performed on each color channel

independently of the two others. Then, the detections found

for each channel are merged to obtain the final positions of

corrupted pixels. By using SDIa, AR based detector, ROD

and SROD detectors, the ROC curves depicted in Figure 3

clearly show the benefit drawn from the preprocessing step

to reduce the false alarm rate either using the affine motion

model or this novel approach. The latter method outperforms

the affine motion model based approach. For instance, for

the same correct detection rate Pc = 0.25 obtained by the

SDIa detector, the approach we propose yields a false alarm

rate Pf = 0.006 against Pf = 0.025 obtained by using the

preprocessing proposed in [5]. A subjective evaluation is also

depicted in Figure 4 where the detection maps obtained by

using the SDIa detector are displayed. These maps show a

noticeable reduction in the false alarm rate (blue pixels in the

maps) when using the proposed preprocessing.

5. CONCLUSION AND PERSPECTIVES

In this paper, a preprocessing step designed to reduce false

alarm rate generated by classic blotch detectors is proposed.

Our contribution in this paper is to firstly adopt a chromatic

transformation model that involves real photometric param-

eters. A generalization to color degraded sequences is also

elaborated. Secondly, a robust adaptive normalized cross-

correlation measure is retained to estimate the motion be-

tween images. Experiments on extracts of a real degraded

sequence have shown the efficiency of the proposed approach.

This work can be improved by resorting to a multiscale analy-

4
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Fig. 3. Detection results using the preprocessing (in solid

line) and without preprocessing (in dot line) and four state-

of-art blotch detectors. From left to right and from top to

bottom: SDIa, ROD, SROD, AR based detector.

sis of the images. This would allow to adapt the size of blocks

used in the MC step to the image content.
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