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ABSTRACT
In collaborative spectrum sensing, spatial correlation in the
measurements obtained by sensors can be exploited by adopt-
ing Generalized Likelihood Ratio Test (GLRT). In this pro-
cess the GLRT provides a test statistics that is normally based
on the sample covariance matrix of the received signal sam-
ples. Unfortunately, problems arise when the dimensions of
this matrix become excessively large, as it happens in the
so-called large-scale wireless sensor networks. In these cir-
cumstances, a huge amount of samples are needed in order
to avoid the ill-conditioning of the GLRT, which degenerates
when the dimensionality of data is equal to the sample size or
larger. To circumvent this problem, we modify the traditional
GLRT detector by decomposing the large spatial covariance
matrix into small covariance matrices by using properties of
the Kronecker Product. The proposed detection scheme is
robust in the case of high dimensionality and small sample
size. Numerical results are drawn, which show that the pro-
posed detection schemes indeed outperform the traditional
approaches when the dimension of data is larger than the sam-
ple size.

Index Terms— Spatial Correlation, Kronecker Structure,
GLRT, Wireless Sensor Network, Cognitive Radio.

1. INTRODUCTION

Spectrum sensing is a fundamental task for cognitive radio,
where unlicensed (secondary) users try to detect the allocated
vacant bands of licensed (primary) users, in order to take ad-
vantage of the free spectrum in an opportunistic manner. The
reliability of a single sensor in detecting weak primary signals
is very low due to the destructive channel conditions between
the primary user and the secondary users [1]. To improve
the reliability, collaborative sensing can be used, where mea-
surements of multiple neighboring sensors are combined into
one common decision. Therefore, this collaborative approach
circumvents most of the propagation impairments due to the
presence of diversity in the set of measurements being pro-
cessed by different sensors. Collaborative spectrum sensing
methods based on the statistical covariance matrix of the re-
ceived signals have been of great interest in recent research

This work was supported in part by the Spanish Ministry of Science and
Innovation project TEC 2011-28219, by the Catalan Government under the
grant FI-DGR-2011-FIB00711.

[2]. The reason is that covariance-based techniques do not
assume any information on signal, channel and noise level
[1]. The statistical covariance matrices of signal-and-noise
are generally different compared to the case when noise-only
is present. Thus, this difference is used to discriminate the
signal component from the background noise. There is a com-
prehensive work in [3, Ch. 9-10], which discusses in detail
the multivariate detector for testing the independence of ran-
dom observations with the help of the GLRT on the basis of
covariance matrices. These GLRT-based detectors typically
end up with a simple quotient between the determinant of the
sample covariance matrix and the determinant of its diagonal
version. Work in [3] is meant for multivariate statistics but re-
cently, these tests have been widely applied to the detection of
signals with distributed sensor nodes especially in the context
of cognitive radios [1, 4].

The GLRT approach for detecting spatial correlation in
the received signal vectors involves the estimation of the un-
known covariance matrix. Therefore, it depends on the sam-
ple size (i.e. the number of samples provided by the sensors
as a function of time) and the dimensionality (i.e. the number
of sensors being processed at a time). In practice, the GLRT
is used based on the assumption that the sample size is large
while the sample dimension is small. In many applications,
where the sample support available for estimating the covari-
ance matrix is limited, the GLRT may degenerate due to a
singular and ill-conditioned sample covariance matrix [5, 6].

In order to circumvent these ill-conditioning problems,
one may assume an a-priori structure on the covariance ma-
trices involved herein, based on the underlying layout of the
sensor field. For instance, a convenient structure that can be
assumed is the Kronecker product structure [5], which can
model the lattice-type spatial structure that appears in net-
works whose sensors are grouped in clusters. By grouping
in clusters and using Kronecker product structure, a non-
singular estimate of the required covariance matrix can be
more easily obtained [5], and this leads to more robust and
stable detection tests. Recently, the concept of exploiting
the Kronecker product structure of the covariance matrix has
received a lot of interest in statistics [7, 8, 6] . Based on these
studies of multivariate statistic, in [9] we proposed a GLRT
detector that exploits the Kronecker product structure of the
spatio-temporal correlation in the received observations of
multiple sensors. In that work, we used the Kronecker prod-
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uct structure to take advantage of the inherent spatio-temporal
structure of the received observations. Unlike previous work,
in the proposed method we indeed take advantage of the Kro-
necker product structure but for the spatial dimension only,
by using the novel concept of inter-cluster and intra-cluster
relationships. Proceeding in this way we show that one can
reduce the number of parameters to be estimated in the covari-
ance matrix, which facilitates the estimation of large matrices
in practice. Moreover, we also analyze herein the proposed
scheme in the Least-Square (LS) paradigm and compare this
approach with the proposed scheme based on maximum like-
lihood paradigm. Numerical results are drawn, which show
that the proposed detection schemes indeed out perform the
traditional approaches especially when the sample support is
smaller.

The remaining paper is organized as follows. In Section 2,
problem statement and details of signal models are presented.
In Section 3, we present the proposed methodology and in
Section 4 detection schemes are discussed. In Section 5 we
present simulation results and Section 6 concludes the work.

2. PROBLEM FORMULATION AND ASSUMPTIONS

We consider a centrally coordinating wireless sensor network
(WSN), where we assume that K sensors are placed in the
form of Grid with uniform spacings. In this problem we also
assume that the coverage of the signal emitted by the primary
user (PU) is spread over all the sensor field. Consequently, we
consider that the WSN exclusively operates over unlicensed
bands. Hence, it needs to use the cognitive radio technology
to arm the sensor nodes with opportunistic spectrum access
capability. Towards this end, a cognitive radio sensor network
is proposed that is a distributed network of wireless cognitive
radio sensor nodes (CRNs), which collaboratively sense the
PU’s signal. In the process of collaborative spectrum sens-
ing, the fusion center directs the sensors to perform spectrum
sensing periodically in the region. All the sensors report their
measurements to the fusion center, which makes the final de-
cision about the presence of the PU. Once the final decision
is made at the fusion center, it broadcasts the decision to the
SUs(or CRNs) within the cell. We assume that the sensors
are connected with the fusion center through dedicated chan-
nels1. Moreover, when the PU’s signal appears, it results in
change in the distribution of observations at the sensors and
the observations will posses a spatial correlation structure due
to PU’s signal [1]. The degree of correlation in the observa-
tions of SUs increases with inter-nodes proximity. In other
words, due to PU’s signal the change will occur both in the
energy level and the covariance structure of the received ob-
servations. Fusion center uses these changes as a detection
metric to detect the PU signal.

We consider that the PU emits a Gaussian signal with
zero mean and variance σ2

s as: s ∼ N
(
0, σ2

s

)
. The signal

emitted by the PU decays isotropically as a function of dis-

1As in the case of Femtocells, these channels can be established by using
the existing wired links between nodes and the central entity.

tance and every sensor will receive attenuated version of the
PU signal in the presence of additive Gaussian noise. Con-
sequently, we consider that the sensors simply measure the
PU signal in the target frequency band, and they report their
sensing results to the fusion center. The task of the fusion cen-
ter is to use the collected information, to determine whether
or not a PU is present in the region. At time instant n, the
observation vector received at the fusion center is x (n)

.
=

[x1 (n) , x2 (n) , · · · , xK (n)]
T , thus the signal model can be

written as: H0 :x (n) = w (n) ,

H1 :x (n) = s(n) + w (n) ,
(1)

where s(n) ∼ N (0,Σs) with i, j-th element of Σs is
σsiσsjρi,j , i, j = 1, 2, · · · ,K and σsi (σsj ) is the stan-
dard deviation of received signal at sensor i (j). Noise
at different sensors is considered independent Gaussian
but non-identical as: w (n) ∼ N (0,Σ0) with Σ0 =
diag

{
σ2
n1
, σ2

n2
, · · · , σ2

nK

}
, where σ2

ni
is noise variance at

i-th sensor. Therefore, under H0, x (n) ∼ N (0,Σ0) and
under H1, x (n) ∼ N (0,Σ1) with Σ1 = Σs + Σ0. In
this work, we consider all of the parameters as unknown
and these need to be estimated. We assume that the fusion
center has available the measurements of K sensors for N
consecutive samples of vector x, which are stacked into the
(K × N) matrix X = [x(1),x(2), · · · ,x(N)] ∈ RK×N .
To solve the detection problem (1) with unknown covariance
matrices Σ1 and Σ0, we need to have K � N , otherwise
estimation of the these parameter will suffer due to the effects
of ill-conditioned sample covariance matrix [6]. In the pro-
cess of spectrum sensing, normally time is limited, thus, the
sample support available for estimating the covariance matrix
is limited. To circumvent this problem, in the following we
propose modification to the traditional methodology.

3. PROPOSED METHODOLOGY

In order to avoid ill-conditioned estimate of the covariance
matrix, we propose to impose some covariance structure on
our data and a convenient structure that can be assumed is
the Kronecker product structure [5]. It is because the Kro-
necker product structure considerably relax the condition on
the sample size, thus it circumvents the need for a very large
sample size required by the classical technique of unstruc-
tured case. In this method the single large covariance matrix
is decomposed into two small covariance matrices based on
Kronecker product. The Kronecker product between two ar-
bitrary matrices Φ and Ψ is expressed as: Φ ⊗ Ψ. Having
said this, in the proposed method we consider to slice the
whole field of K sensors equally, into Lc clusters and the
number of clusters Lc should be sub-multiple of K. Con-
sequently, the received vector x (n) ∈ RK is sliced into Lc

sub-vectors as: xl (n) ∈ RKc : l = 1, 2, · · · , Lc in a way
that the l-th sub-vectors correspond to l-th cluster. For fur-
ther insight, the process is elaborated in Figure 1. Once
we have these sub-vectors of the received observation x (n)
then all of the sub-vectors are stacked into a Kc × Lc ma-

2



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

x (n)

x1 (n) ∈ RKc x2 (n) ∈ RKc xLc
(n) ∈ RKc

XP (n) = ∈ RKc×Lc

∈ RK

!"#$%&'()"*+

[ ]
x1 (n) xLc

(n)x2 (n)

Fig. 1. Slicing process of sensor field and the observation
vector.

trix Xp(n) = {x1 (n) ,x2 (n) , · · · ,xLc (n)} ∈ RKc×Lc .
The elements present in each column of the matrix Xp(n)
are spatially correlated and this correlation is quantified by
inter-cluster covariance matrix ΣKc

. On the other hand, the
cross-correlation between the columns of the matrix Xp(n) is
quantified by intra-cluster covariance matrix ΣLc . Now con-
sidering the fact that the sensors are placed in a uniform grid,
we can infer that the covariance structure of the columns of
matrix Xp(n) remains the same as the topology of the Kc

sensors in all of the Lc clusters is the same as if the clusters
are uniform antenna arrays. Note that the Kronecker product
based decomposition makes an implicit assumption that for
multiple sensors in each cluster, the spatial correlation struc-
ture remains the same [10]. Taking into account these consid-
erations the slicing method given in Figure 1 can leads us to
say that Xp(n) is approximately comply with the matrix nor-
mal of the repeated data [6, 11]. It is widely reported in the
literature that the covariance structure of the matrix normal of
repeated measurements can be safely decomposed by using
Kronecker product [6, 11, 10]. Hence, this provides us the
required motivation to approximate our observations matrix
Xp as having the separable structure based on the Kronecker
product [6]. Therefore, we use the concept of the Kronecker
product to decompose the large scale covariance matrix into
two sub-matrices. To be more specific, the overall correlation
structure is represented by ΣKc

⊗ ΣLc
. By using linear al-

gebraic properties of the Kronecker product, the signal model
under the hypothesisH1 can be represented as [6, 11]:

Xp(n) = N (0Kc×Lc ; ΣKc ,ΣLc) . (2)

On the other hand as noise process has no structure, hence,
under the hypothesis H0 we have Σ0 as a diagonal matrix.

Herein, we remark that although the structure of separable
covariances dramatically reduces the number of parameters
in the covariance matrix to be estimated but it also imposes a
number of constraints on the variances and correlations of the
elements of the received vector x (n) [6]. In-spite of know-
ing about these minor constraints, the main motivation of ex-
ploiting the Kronecker product structure is to add robustness
against the small sample support to the existing covariance
based detection schemes. We further add that in the case
where the Kronecker product structure is not fully present,
the detection scheme with the Kronecker product structure
can still provide advantages over those schemes that ignore
the spatial correlation. Because instead of completely ignor-
ing the spatial correlation, it slices the number of parameters
in the covariance matrix to be estimated. However, this is a
qualitative statement. At this point a more quantitative study
is not available.

4. DETECTION ALGORITHMS

In our detection problem, the parameters under both hy-
potheses are unknown that prevent us from adopting the
well-known Neyman-Pearson detector. Hence, we adopt the
GLRT approach, since it usually results in simple detectors
with good performance. Solution to the problem (1) based
on the traditional GLRT approach ends up with a simple
quotient between the determinant of the sample covariance
matrix Σ̂1 = 1

N

∑N
n=1 x (n) xT (n) and the determinant of

its diagonal version Σ̂0 = diag(Σ̂1). Interested readers can
find details about traditional GLRT formulations in [3, Ch. 9-
10]. Consequently, to avoid repercussions of the small sample
support (i.e. K � N ), in Subsections 4.1 and 4.2, we derive
the improved detectors based on the proposed methodology
in Section 3.
4.1. Proposed GLRT
The traditional GLRT approach for detection problem in (1)
degenerates due to singularity issues that arises in detection
problems with small samples sizes and large number of sen-
sors. To cope with this problem, we propose a GLRT for the
detection problem (1), that is expressed as:

ΛProposed (X) =
max
Σ0

f (X; Σ0)

max
Σ1,Kc ,ΣLc

f
(
X

(N)
p ; ΣKc

,ΣLc

) ≷H0

H1
γ, (3)

where f
(
X

(N)
p ; ΣKc ,ΣLc

)
and f (X; Σ0) are the like-

lihood functions under hypotheses H1 and H0, respec-
tively. As we have mentioned in Section 2 that N sam-
ples of x(n) are available, hence, the fusion center has
X

(N)
p = [Xp(1),Xp(2), · · · ,Xp(N)] ∈ RKc×NLc . Solv-

ing (3), by using maximum likelihood estimation(MLE)
paradigm, we can get the expression [9],

ΛProposed (X) =


(

detΣ̂Lc

)Kc
(

detΣ̂Kc

)Lc

(
detΣ̂0

)K
 ≷H0

H1
γ. (4)
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Algorithm 1 ML based Non-Iterative Flip-Flop

1. Choose a starting value for Σ̂0
Kc

as: IKc×Kc

2. Estimate Σ̂1
Lc

from (5) with Σ̂Kc
= Σ̂0

Kc
.

3. Find the following

• Estimate Σ̂Kc from (6) with Σ̂Lc
= Σ̂1

Lc
.

• Estimate Σ̂Lc
with Σ̂Kc

from the previous step.

The MLE of unknowns ΣLc
and ΣKc

is found by taking the
derivative of logf

(
X

(N)
p ; ΣKc

,ΣLc

)
with respect to the un-

known ΣLc
and ΣKc

and then equating to 0. By doing so, the
estimates under the hypothesisH1 can be written as [6]:

Σ̂Lc
=

1

KcN

N∑
n=1

XT
p (n) Σ̂−1Kc

Xp (n) , (5)

Σ̂Kc =
1

LcN

N∑
n=1

Xp (n) Σ̂−1Lc
XT

p (n) . (6)

Expression (5) and (6) suggest that Σ̂Lc
and Σ̂Kc

can be
estimated using an iterative method such as the Flip-Flop
algorithm. The Flip-Flop algorithm is obtained by alternately
maximizing logf

(
X

(N)
p ; ΣKc ,ΣLc

)
w.r.t. ΣKc keeping the

last available estimate of ΣLc
fixed and vice versa. In [6],

numerical experiments have been reported which indicate
that the Flip-Flop algorithm performs very well and is much
faster than a more general purpose optimization algorithm
such as Newton–Raphson [6]. In [8], it has been discussed
that for the case of large enough N , there is no need to it-
erate the algorithm. Taking into account this fact, we adopt
non-iterative Flip-Flop approach and only perform the the
steps given in Algorithm 1. To begin the process of algo-
rithm, we use an initial value of Σ̂0

Kc
= IKc×Kc . Under H0

we have to estimate the the diagonal matrix Σ0. This can
be found by taking derivative of logf (X; Σ0) with respect
to the unknown Σ0 and solving the result of derivative by
equating it to 0. Doing so the estimate of Σ0 can be written
as: Σ̂0 = diag

(
1
N

∑N
n=1 x (n) xT (n)

)
.

The main advantage of the proposed GLRT (4) over the
traditional is that under H1 instead of 1

2K(K + 1) parame-
ters, it has only 1

2Kc(Kc + 1) + 1
2Lc(Lc + 1) parameters to

estimate. The dimensions of these two covariance matrices
ΣLc and ΣKc are much smaller than the dimension of full co-
variance matrix Σ1, that is why the computations are much
less demanding.

4.2. Flip-Flop Algorithm with Least Square Estimation
In every iteration of algorithm 1, to calculate (8) and (7), the
inverse of covariance matrices is required. It means that these
expressions demands increased computation burden. Keeping
this in mind and using results of [7, Theorem 4.1], we present
the Flip-Flop algorithm based on least square estimation to
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Fig. 2. Receiver Operating Characteristic (ROC) Curve: N =
40, K = 36, σ2

s = 2, ac = 0.3, β = 2

find Σ̂Lc
and Σ̂Kc

. The expressions for Σ̂Lc
and Σ̂Kc

in Least
square(LS) paradigm can be written as:

Σ̂Lc =
(N − 1)

−1

Tr
(
Σ̂2

Kc

) N∑
n=1

XT
p (n) Σ̂KcXp (n) , (7)

Σ̂Kc =
(N − 1)

−1

Tr
(
Σ̂2

Lc

) N∑
n=1

Xp (n) Σ̂LcX
T
p (n) , (8)

where Tr (A) denotes the trace of matrix A. In the LS case,
the Kronecker product of ΣLc and ΣKc is actually fitted to
the sample covariance matrix by minimizing the difference in
Frobenius norm with respect to ΣLc

and ΣKc
as:

min
ΣLc ,ΣKc

∥∥∥Σ̂1 −ΣLc
⊗ΣKc

∥∥∥2
F

(9)

The derivation process of (7) and (8) based on solving (9) is
given in Appendix A of [12]. Moreover, the steps in the al-
gorithm based on the LS are the same as given in Algorithm
1. The only difference is that instead of (5) and (6), it uses
(7) and (8). Furthermore, LS paradigm can be used without
assuming any prior information about the probability distri-
bution of the received signal should be known.

5. NUMERICAL RESULTS

For the purpose of simulation we consider a sensor network,
where K = 36 sensors are placed in the uniform grid. For
the simulations we consider Lc = 4 clusters, that are ba-
sically located in the form of four quadrants of a cartesian
co-ordinate system and each cluster consists of Kc = 9 sen-
sors. Furthermore, we assume that the event (PU) appears at
the center (x = 0, y = 0) . We analyze the performance of
both of the detection approaches based on the probability of
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Fig. 3. Area under the ROC curve (AUC): K = 36, σ2
s = 3,

ac = 0.3, β = 2

detection (PD) and the probability of false alarm (PFA). In
Figure 2 we simulate PD vs PFA for the case, where we have
total K = 36 sensors and N = 40. The results clearly show
that the detection performance of the traditional GLRT suffers
at low level of sample supports. We can also see that the pro-
posed detection schemes give good performance even at very
small values of N . We have also observed from our experi-
ments that most of time when N < K, the traditional GLRT
completely collapse and the proposed schemes have reason-
able good performance even under N < K regime. To show
the effects of changing samples size in a single picture, it is
desirable to have a single and quantitative figure of merit in
order to compare different detectors. This metric is typically
the area under the ROC curve (AUC), which varies between
0.5 (poor performance) and 1 (good performance). In Fig-
ure 3 we analyze the detectors, for different values of the
number of samples N used to estimate the covariance matri-
ces. The results confirm that the performance of the proposed
scheme is better even in the case of very small N . Another
interesting conclusion can be drawn from the overall results is
that the performance of proposed scheme with MLE paradigm
is slightly better than the LSE paradigm.

6. CONCLUSION

In this paper a novel spectrum scheme has been proposed with
the aim of detecting the signal of a licensed user by exploit-
ing the spatial correlation present in the observations received
from the sensors. The traditional detection approaches suf-
fer due to singularity and ill-conditioned sample covariance
matrix. To address this problem, we have proposed detection
schemes by slicing the large covariance matrix into sub- co-
variance matrices based on the concept of Kronecker product.
Simulation results obtained, have shown that the proposed
detection schemes consistently have better detection perfor-
mance in the case when the sample size is small.
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