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ABSTRACT the unknown target vector is estimated, are centrally avail

In thi . | aloorithms for distributed estiioat able. That is, there exist a central processing unit (ordfusi
n this paper, two novel algorithms for distributed estia .Center, FC), which has access to all the training data, and

0: st[i)varser S'%natl\z aretpresrenteg. rTh(_al_s Iggrrltth n|15 frcthI::)r\T/]v-an 'Iiaerforms all essential computations. Nevertheless, inyman
Zt:s 'r?gt?S'nyn S;Ee?jana%(;ieeeutﬁé nozessofir?gnetw;ﬁe applications the need for decentralized/distributed gsse
! ining ” ing rises. Typical examples of such applications are those

have access to input—output data, whereas the secondemer%volvmg wireless sensor networks (WSNSs), which are de-

mgigg&g ggg;eigfesxﬁﬁe;;iﬁ giﬁ:trdt?;aeiggérllgi?\ c;tri]n?gfri loyed over a geographical region, and the nodes are tasked
. . . . ’ . " "Yo collaboratively estimate an unknown (but common) sparse
tion with the neighboring nodes. The goal is twofold, first y ( ) sp

to identify th t set of th K ional. and th vector. The existence of a fusion center, which collects all
tﬁel ne:nl yerg S:Ingr Sﬁ.cﬁ areerggtrnc?;vdn '?%E: ,a?tr'] o Seq[aining data and then performs the required computations,

—ZEro values, whi U : v uRnay be prohibited due to geographical constraints and/or en
port set. Theoretical results are outlined and an expetiahen

lidati f1h d alaorithms i ied out ergy, bandwidth limitations. Henceforth, the developnunt
validation ot the proposed aigorthms IS carried out. distributed algorithms is of significant importance.

Index Terms— Distributed systems, compressed sensing, A scarce design factor in data networks is the available
system identification, greedy algorithms bandwidth and hence needs to be managed carefully. There-
fore, itis desirable for each node to obtain the minimurmtrai
ing data without consuming much bandwidth. Besides, the
existence of a training sequence can impose a significant ove

ead cost. Blind identification methods rely only on output
ata to identify the sparse signal and hence eliminate ted ne
pr training [11]. Therefore blind identification algoritis of-

1. INTRODUCTION

Many real-life signals and systems adhere to parsimonio
models. In other words, they comprise a small number o
significant coefficients, whereas the rest are either zero : - . L .
have negligible amplitudes. Typical examples of sparse Sig{)er a bandwidth efﬂment. sol_utlon.t.o dl'strlbuted Ie;arnlfr@:e
nals/systems are: wireless multipath channels, acouigtic s asic tools to explore blind identification strategies aexim

nals, seismic data, image deblurring and High Definition Tymum likelihood methods, subspace techniques and statistic
[1] methods, using either second order or higher order informa-

There are two major algorithmic approaches to sparsityﬂOn [111,[12]. In this work, Higher Order Statistical (HQS

aware learning. The first promotes sparsity by embeddimg intmformatlon frqm the avaﬂable output data of each node is
the optimization problem th& norm constraintge.g.,[2—4]. used co_operatlvely to estimate th_e unknown vector..

It is by now well established that such a constraint promotes " thiS paper, two novel algorithms for sparse signal es-
sparse solutions. The other approach relies on the greedfnation in distributed networks are proposed. The first is
viewpoint, [5, 6]. Greedy techniques identify the position appropriate for training—based operation. Each node has ac

in which the non—zero coefficients lie (knownsagport séef, C%SS tc;]a_ finite number of |nput—outputkmezsuremeln_ts: fBe-
and then restrict the estimation step in this subset. sides their own measurements, network nodes exploit infor-

With only few exceptionse.g.,[7—10], sparsity promot- mation, which comes from their neighbours, where commu-

ing algorithms assume that the training data, through Whic@'cat'on.IS possible. The Frammg—based algorithm Smmb .
ata fusion under a certain protocol; next, the nodes iddivi
Email: {schouv, gni | , kal ou, st heodor }@di . uoa. gr. ally compute their own support set. Thelominant positions
Tris regearch) hasd been EO-finanCIe(fi b)(/j thﬁ Eurf;‘pehangnif;m&m of the unknown vector are recovered and then a Least Squares
Social Fund ESF) and Greek national funds through the OpgedtPro- ; : ; ;
gram “Education and Lifelong Learning” of the National $¢gic Refer- _StGp, restricted on this _SUbset’ follows. A th_eoretlcalm
ence Framework (NSRF) - Research Funding Program: Thatesstingin 1S Sketched and experimental results highlight the enfiance

knowledge society through the European Social Fund. performance of the proposed batch scheme, compared to an




existing sparsity promoting distributed algorithm. Theegply  information received by the neighborhood. The decentdliz
operating mode is subsequently employed in the blind setupptimization can be efficiently solved by adopting the Alter
The resulting algorithm exploits network information to-en nating Direction—Method of Multipliers (AD—MoM), [13]. It
hance the sample statistics in each node, in order to perfortras been shown in [7], that the solution, which occurs if ones
recovery of the unknown sparse signal. solves the decentralized problem, coincides with the soiut
Notation: Vectors will be denoted by boldfaced letters andobtained by solving (3). It should be pointed out that each
matrices by uppercase boldface letters. The syrtblwill node lacks global network information; however if an appro-
stand for the transpose. Moreover, the set of all real nusnbepriate cooperation protocol is adopted, then the global-sol
will be denoted byR. For a vectorx := [z1,...,2,,]7 €  tion can be obtained.
R™, the termsupps(x), denotes its support set, which con-

tains thes largest in amplitude positions af Givenacertain = 3 GREEDY TECHNIQUES AND THE PROPOSED

sets, its Cardinality will be denoted bi6'| FinaIIy, ||X||g2 TRAINING—BASED ALGORITHM
will be the Euclidean norm anfiix||,, := >, |z;| the ¢
norm ofx. Greedy techniques under the centralized scenario, iehati
estimate the unknown parameter by applying the following
2. SPARSE PROBLEM FORMULATION two-step approach:

e Subset Selection After the computation of the proxy
Our task is to estimate an unknown sparse parameter vector  signal, which is constructed based on input—output

h, € R™, exploiting a finite number of measurements col- measurements, the-dominant terms are computed.

lected at theV nodes of an ad—hoc network. We denote the These comprise the identified support set.

node set byV' = {1,..., N}, and we assume that each node e Greedy Update The estimate of the unknown vector

is able to exchange information, with a subsef\6f namely is computed, by performing a Least—Squares restricted

Ny CN,k=1,...,N. This set is also known as timeigh- on the identified support set.

borhoodof k. The input—output relation adheres to the fol- The performance of the greedy—based algorithms is cryciall

lowing linear model: affected by the choice of the proxy signal. One of the first
ik = Aphs + 1, Yk € N (1) approaches is the Orthogonal Matching Pursuit (OMP) [14].

The OMP proxy signal equals tp = AZ(y — Ah) ~
whereA; is anl x m sensing matrix, withi < m, y, € R AT A(h, — h), whereh stands for the most recent estimate.
andn;, € R! is the noise process. The vector to be estimatedit each iteration, the largest coefficient of the proxy is eom
is assumed to be at mostsparsej.e., ||h.|, < s < m, puted, and is added on the current estimate of the support
where|| - ||, denotes thé, quasi—norm. set. This procedure is repeatedimes and the support set

In non—distributed sparsity—aware learning the goal is thés estimated. Noise sensitivity is a major drawback of this
estimation of the vectoh,, using fewer measurements, algorithm. A more sophisticated approach proposed in §5], i
than the dimension of the problem. A representative ex- the Compressed Sampling Matching Pursuit (CoSaMP). This
ample of a sparsity promoting algorithm is the Least Absolut algorithm allows to chose multiple indices at each iteratio
Shrinkage Selection Operator (LASSO), which solves the foland results to a better performance compared to the OMP.

lowing optimization problem An adaptive version of the CoSaMP, known as SpAdOMP
. ) ) has been proposed in [6]. A different approach, presented
h = arg Hhrﬁmq ly — Ahl,, ) in [15], selects thes dominant coefficients of the following
1 <

proxy: p = h + AT(y — Ah) ~ h,. This idea will be
where the node subscriptis surpressed, andl is a user— followed in this study, since it leads to enhanced perforrean
defined radius of thé;—norm. Notice that the terfly —  compared to other schemes and allows network support set
Ahl||7, accounts for the misfit between the input—output meaeonsensus,e., the nodes will agree on the same support set
surements, and thg—norm constraint promotes sparsity by in the distributed scenario, due to its non time varying reatu

shrinking small coefficients towards zero. Several techesg In distributed greedy—based algorithms, information is ex
have been proposed for solving the optimization problem dechanged, so as to achieve the following goals:
scribed in (2)e.9.,[3]. e Support set Consensus.That is, all network nodes
We turn now our focus on the distributed sparsity—aware identify the same support set.
estimation task and rewrite (2) as follows: e Information enhancement. In scenarios where the
. ) ) number of measurements is small, exchanging data
h = arg s 2;[ [y — Arhllz,- (3) with the neighborhood and fusing them under a certain
- ke

protocol, can lead to better results.
This problem can be reformulated in a fully decentralizedThe steps of the proposed algorithm are summarized in Table
way, where each node exploits local information, as well ad. In steps 1 and 2, the nodes exchange their input—output



Table 1. The Distributed Hard Thresholding pursuit Algorithm (i)

Algorithm description Complexity
hio=0m, Ypo=Yr, Aro=Ar Sko=0 {Initialization}
Loop .
1: Ybn = 2o OrkYpp 1 {Combine local output measurements O (|N|)
_ reNg _
2: Apn= Y arrArn-1 {Combine local input measuremehts O(|Ny|ml)
reNy
3 Sk,n = SUpp, (hk,n_l +Z;ﬂn(ykm - Zk,nhk,n_l)) {Identify s largest componen}s  O(m?1)
4: Ry, = argming, {7y — Agnhl|7,},supp(h)CSkn {Signal Estimatiof O(ms)
5: hpn= > brrhrn {Combine local estimatgés O(|Ni|m)
reNg 5
6: kon = supp, (Pi,n) {Identify thes largest components of the estimate ~ O(m)

h
ntil_halting condition igrue

[

measurements and fuse them under a certain protocol. Thiise £—th node, which is assumed to be bounded by a finite
information fusion is dictated by the combination weightsconstant’k € N, and0,, I, are thel x 1 vector of zeros and
ark, Vk € N, ¥r € Nj. As it will become clear later on, the!l x [ identity matrix respectively. Moreover, the noise
if these coefficients are chosen properly, thén,, andy, ,  terms are spatially independent over the nodes.

tend asymptotically to the average values,, = SN A, Since the vectors; are independent over the nodes,
and 3 ZL y,, respectively. This significantly improves and their variance is bounded, the strong law of large num-

the performance of the algorithm, since as the number of itePers ensures tha(Fl/N) Ei\f:l My N —r 0o converges
ation increases, the data available at each node are eruhanc%:mOSt surely to its ex'pectt'ad value Wh'(.:h 'S z€ro. Fur-
in the sense that the proxy selection and the parameter es 1ermore, the assumptions 'mposed WA in conjunction
mation procedure will contain information which comes fromWlth the results of [16, 17], imply thag, ,, converges to
the entire network. In step 3, thdargest in amplitude coef- its meanlim,, o ¥ ,, = (1/N) Ei\le yr. We replaceyy,
ficients of the signal proxy are selected, and step 4 performfsom (1) to obtainlim, . ¥ ,, = ((1/N) SN AR, +

a Least-Squares operation in the support set computed in the/ ) Zivﬂ N OF iy, 00 Ty, ,, A limp_yo0 A nhs. The
previous step. In step 5, the nodes exchange their estimatgg; relation holds due to the propertiesidf;, and the fact
and fuse them in a similar way as in steps 1,2. Finally, sincenat (1/N) 2V | A, is the limit of the sequence defined in
the nodes have access to different measurements, especialtep 2 of table 1. For the derivation of the Theorem we will
in the first iterations in which their input-output data act N make the approximation that after a large number of itera-
Criose to H;)e aa/erﬁge Va'gez’ ;fhe estim?ted sulppor:]setsgamq{bns, no, the previously mentioned limits holde., 7, ,, ~

the neighborhood may be different. This implies that in ste N s ’

5 there is no guarantee that the produced estimate will b (1/N) 2oy Ar)he = Age b, ¥ € N, ¥ 2 no.
s—sparse. To this end, in step 6 a thresholding operatios tak§’ heorem 1. Under the previous discussion and a restricted

place and the final estimate at each node-sparse. isometry assumption with constafit < % vk € N, for the
matrix (1/N) Y2 | A,, it holds that
3.1. Convergence Analysis By iy — Bolles < pllBy, — Boley (4)
Let us define theV x N combination matrixW; with en- 5
tries given bya,. ;. Following [16], W, is chosen so that it Where p = man:eN{ 17355} < 1,
possesses the following properties: h,=1[h{,,....hL J" e R"™andh, = [n],... hI]T €
1. 1T W, = 1%, wherely € R” is the vector of ones. RN™,
2. Wily = 1y.

3. MWy — 151%/N) < 1, where)(:) stands for the
maximum eigenvalue of the respective matrix.

The same assumptions also hold for the maWix with en-
tries_bnk. Methodol_ogies for _constructing the combinat_ion3_2_ Blind Diffusion Pursuit Algorithm
matrix, so as to fulfil the previously mentioned assumptions
in a decentralized fashion, have been proposed in [16]. This section addresses the problem of sparse blind idemtific
tion in distributed networks. The proposed algorithm ilie
The noise termn, follows the Gaussian distribution on a distributed one step greedy scheme and relies on higher
N(0,,021;), Yk € N, whereo? is the noise variance at order cumulants.

Proof: The proof will be presented in a forthcoming ex-
panded version of this work.



from output observations of finite length, which introduce

Table 2. The BlinD distributed Pursuit Algorithm bias/variance distortion. A well known techniques to tackl

Algorithm description Complexity ~ bias/variance distortion is the segmentation of the olezkrv
While ¢ < Consensus Iterations data into non—overlapping records. More specifically, sam-
1: erm,r) = 3 anpely ™V (m, ) O(Nk|m) ple cumulant estimates are obtained from each segment, and
2: =it reNk then averaged across the segments to obtain estimates of low
End While bias/variance. Such an operating mode arises naturaligin d
3. S, =supp (a;’;) (m, 7-)) O(m) tributed networks, where each node has its own measurements
While i < Consensus Iterations and can exchange/combine them with other nodes. There-
4: CEl = X bekCSlsY O(|N|s%) fore, the first algorithm of [18] is next modified to operate
;. i rENG in a distributed fashion, where cooperation helps it reduce
End While bias/variance problems.
6: Cyl =USVy! O(s%) The algorithm outlined in Table 2 consists of four major
7: Ek‘sk = 11011015 1, ’A‘\SE =0 steps. In the first step, it runs distributed averaging cosise

iterations over the networkge. computes the average of the
sample cumulant proxy vector, given at the nodes (see Step
In a centralized operating mode, an one step greedy algd). Distributed averaging is performed as outlined in secti
rithm is presented in [18]. Following similar rationale @s i 3.1. More specifically, for a user—defined number of itera-
[18], we consider the system: tions, the nodes exchange information with the neighbathoo
T and fuse them using the combination weights. Afterwards, th
Yk = @l + e, VR €N, n= 1,00 (5) network comes approximately to consensus or agreement to a
I common cumulant proxy vector. Then in Step 3., each node

the input and, . is the noise process. The previous daltaperforms hard thresholding to tkelargest indices of the cu-

generation model can be written compactly in a matrix—\lectornUIant proxy vec_tor in order to identify the support sBt,
form as in (1). Thesth order output cumulant of Eq. (5), (the of the unknown signal. These two steps constitute the subset

single system case) when driven by a stationary independe r?lecpondmeCZartusn:]Lor thg c;u:lmesci alg;rlthn;.i Tr(ial;(t’tcgm\(/e -
and identically distributed white noise process, is givethe €9 ie yt.up 'ate af asdte c;he (Step | .)ta f usZﬂca €
Brillinger—Roseblatt formula: aging iteration is performed to the cumulant matrix re

on the identified subsﬁ’g;’lgk, which is required for identifi-

m p—1 cation. Finally, the last two steps estimate the unknownagig
Cpy(T1s- o Tp1) = Ypw O _ hoi [ [ Bwitr;»  (6)  using the techniques outlined above.
i=0 j=1

whereyy ,, is the outputar.,, = [akn,-- -, Gk n—m+1

WheI'Eh*ﬂ; is thei—th coefficient of the vectah,, andvpm is 4. COMPUTER SIMULATIONS
thepth order cumulant of the input with,, (1, ..., 7p—1) =
Vpa0(71, - - -, Tp—1). Toavoid the inherent scaling ambiguities |, the first experiment, the DiHaT is compared to the Dlasso

@) 0 = 1, (0) 9pe # 0@nd ()l # 0. The support s yajidated in a scenario where the nodes do not cooperate
set of the unknown signal is chosen using output cumulanfith each other, or in other words they produce estimates re-
information at properly selected lags of the form lying solely on their local input—output measurements. & ne
work with N = 20 nodes is considered, the dimension of
_ the unknown vector equals te. = 70 and the number of
= Ypahsmhs -, With T =0,...,m. (7)  measurements at each nodé is 55. Furthermore, for the
Therefore collecting all cumulant information of Eq. (7) in u_nknown vector we have_ th%’*”@ » 10. _The Input ma-

_ . . trix A follows the Gaussian distribution with zero mean and
a vector,¢,, (m, T), gives rise to the cumulant proxy where _ . o .
. . . . - variancel. Moreover, the noise is generated with respect to
its dominant in magnitude positions reflect the support et o . . . . :

. : N the Gaussian distribution and a Signal to Noise Ratio (SNR)

h, [18]. The next step is to restrict the estimation step to the L S
: o L at each node equal to 20 dB. The combination coefficients
identified support setS. The estimation method can be any

of the ones reported in [12, Chapter 7]. Here we adopt the mer ko br,i. are selectedby the Metropolis rule [16]. The per-

SVD which is found in Table 2 steps 4-5 whagéh element formance metric which IS _presen_ted Is the average normal-
~(k.0) o - ized Mean Square Deviation which equalsNiSD(n) =
OfCSklsk = cqy(m, i, j) with 0 < i,7 < m[18]. L IR —he 2, h i1
A weakness of the above algorithm, is that in practicev D ken A and the curves result from an averag-
the true cumulants are replaced by sample cumulants, déyg of 100 independent Monte Carlo runs. The first computer

noted byé,, (71, ..., 7,—1). Sample cumulants are estimated experiment tests the proposed training based method versus

Cpy(m, T) = cpy(m, 7,0,...,0) = vpmh*,mh*,ThfI)Q
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Fig. 1. Average MSD Performance of the proposed algorithms

Dlasso. The regularization parameter, which is user definedz]
in the Dlasso, is computed via a cross validation procedure,
as proposed in [7]. Fig. l.a illustrates that the DiHaT out-
performs the Dlasso, in the sense that it converges faster to
a similar error floor. Furthermore, the DiHaT in the non-
cooperative scenario converges to a higher error floor, lwhic [4]
indicates that the cooperation among the nodes enhances the
results. It should be pointed out that the Least Squares oper
ation of the DiHaT takes place in the identified support set, [5]
which reduces significantly the dimensionality, in conttas
the Dlasso, where all the operations take place in the @igin (6]
space of dimensiom.

In the second experiment, the performance of the BlinD
distributed pursuit is examined. To this end, the perfor- "]
mance of the proposed blind scheme is compared to the

non—cooperative scenario. The network consistd/of 20 [8]
nodesm = 50, s = 5 and the SNR equalz) dB. The input
is an independent and identically distributed QPSK signal.[g]

The number of consensus iterations at each nod8.ifig
1.cillustrates that the cooperation among the nodes ingsrov [10]
the performance of the algorithm, since a better MSD can be
obtained even if the number of measurements is small, at the
expense of the extra computational complexity coming fromy )
the consensus iterations.

5. CONCLUSION [12]

13

In this paper, two novel algorithms for distributed sparse-v 13l
tor estimation are proposed. The first is suitable for tregni  [14]

based operation, whereas the second operates blindly. Both
algorithms follow the greedy principle. Theoretical resuf [15]
the training based scheme are discussed, and the perfagmanc
of the algorithms is validated through experiments. Future

research will be focused on sparse blind algorithms for nontt6l

linear systems. [17]
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