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ABSTRACT

In many short-time Fourier transform (STFT)-based single

channel speech enhancement algorithms, the clean speech

spectral amplitude is estimated from a noisy observation to

suppress additive noise. For the estimation, only the noisy

amplitudes and functions thereof, like the a priori or a pos-

teriori signal-to-noise ratio (SNR), are utilized. Information

about the clean speech spectral phase is mostly not employed.

In this work we present a comprehensive speech enhancement

setup that combines phase-sensitive and phase-insensitive

amplitude estimation, improving the perceptual speech qual-

ity of the enhanced signal in terms of PESQ compared to

phase-insensitive amplitude estimation alone. The proposed

algorithm is real-time capable in the sense that it is imple-

mented in a causal block-wise manner and the computational

complexity is feasible.

Index Terms— speech enhancement, noise reduction,

phase estimation, amplitude estimation

1. INTRODUCTION

In STFT based single channel speech enhancement, a speech

signal s (n) corrupted by additive noise v (n) is observed

with only one microphone. The noisy observation y (n) =
s (n)+v (n) is chopped into segments of length N , with a seg-

ment shift of L samples, and multiplied by a window function

w(n). The spectral representation of the noisy observation

is obtained by applying a discrete Fourier transform (DFT),

giving

Y (k, ℓ) = |Y (k, ℓ) |ejφY(k,ℓ) = S(k, ℓ) + V (k, ℓ) . (1)

For brevity, we neglect the frequency index k and the segment

index ℓ in the sequel whenever possible. The complex spec-

tral coefficients of the clean speech, the noise, and the noisy

mixture are denoted by S = |S|ejφS , V , and Y , respectively.

In speech enhancement, typically only the spectral amplitudes

|Y | are modified, while the noisy phase φY is kept unchanged,

This work was supported in part by the Cluster of Excellence 1077

”Hearing4All”, funded by the German Research Foundation (DFG).

e.g. [1, 2]. This is often motivated by the assumption that the

enhancement of the spectral amplitude is perceptually more

important than the enhancement of the spectral phase [3].

Further, in [1] it has been shown that the phase of the noisy

signal in the STFT-domain φY is the minimum mean-square

error (MMSE) optimal estimator of the clean speech phase

φS given that φS is uniformly distributed between −π and

π. However, in [4] Paliwal et al. conducted listening tests

to investigate the importance of the spectral phase in speech

enhancement and came to the conclusion that incorporating

information about the phase can potentially improve the per-

ceived signal quality.

One of the most well-known approaches to estimate the

spectral phase of a speech signal has been proposed by Grif-

fin and Lim [5]. It exploits correlations between overlapping

signal segments to iteratively estimate the spectral phase from

the spectral amplitude. Several improvements have been sug-

gested over the years, leading to faster convergence and real-

time capability, see e.g. [6] for an overview. However, these

methods rely on the availability of the clean speech spectral

amplitudes. As a result, the performance is limited when only

estimated amplitudes are available [7], and artifacts such as

echo, smearing and modulations may occur [8]. However, in

the context of single-channel source separation the iterative

approaches have been shown to outperform classical Wiener

filter approaches [8][7].

Recently, we proposed to estimate the clean STFT-phase

both on and between spectral harmonics from an estimate

of the fundamental frequency in voiced speech [9]. This

estimate was then applied to speech enhancement [10, 11].

The idea of applying fundamental frequency based phase

estimates for speech enhancement was also investigated by

Mehmetcik and Çiloğlu [12]. However, in contrast to [9],

in [12] the noisy phase is only modified on the spectral har-

monics, while the noisy phase between the speech spectral

harmonics remains unchanged. This limits the achievable

improvement in a speech enhancement framework which

explains the differences in performance between [12] and [9].

Like many amplitude estimators the log-spectral ampli-

tude estimator (LSA) is derived under the assumption that the
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clean speech phase φS is unknown and uniformly distributed.

However, using [9] we obtain an estimate of φS. As a result,

φS can not be assumed uniformly distributed anymore, mean-

ing that the LSA is not the optimal amplitude estimator in this

context. Thus, in [11] a novel, phase-sensitive clean speech

spectral amplitude estimator has been proposed that incorpo-

rates knowledge of φS for an improved estimation of |S|. This

estimator has been shown to outperform existing approaches

in terms of speech quality as predicted by PESQ, for both,

oracle phase as well as blind phase estimates obtained via [9].

The technique presented in [9] provides phase estimates

only for voiced sounds. For unvoiced sounds, the employed

deterministic model does not hold. Accordingly, phase infor-

mation can only be incorporated during voiced speech, while

unvoiced sounds have to be handled differently. In this paper,

we present a real-time capable, self contained setup for sin-

gle channel speech enhancement that combines clean speech

phase and amplitude estimation.

We shortly present the clean speech phase estimation in

Section 2, followed by a real-time capable version of the noise

robust fundamental frequency estimation algorithm PEFAC

[13] in Section 3, and the phase-sensitive amplitude estima-

tor [11] in Section 4. In Section 5 we rate the reliability of

the phase estimates based on the probability of a segment be-

ing voiced and combine phase-sensitive and phase-insensitive

speech enhancement accordingly. After presenting the evalu-

ation in Section 6 this paper is concluded in Section 7.

2. PHASE ESTIMATION

In [9] we showed that during voiced speech, one can find char-

acteristic structures within the phase. These structures can be

visualized best by demodulating each STFT frequency band

into the baseband and taking the phase difference from one

segment to the next. An example of such a phase spectrum is

presented in [9]. Similar to the speech structures in the spec-

tral amplitudes, the structures in the spectral phase are lost to

a great extend when the clean speech signal is degraded by

noise. The goal of the phase estimation in [9] is to reconstruct

the clean speech phase based only on a noisy observation. For

this, a harmonic signal model is employed for voiced speech,

consisting of sinusoidal components at the fundamental fre-

quency f0 and its harmonics fh = (h+ 1) f0:

s(n) ≈

H−1∑

h=0

2Ah cos

(
2πfh

n

fs
+ ϕh

)
, (2)

with harmonic index h, number of harmonics H , amplitude

Ah, time domain phase ϕh, and sampling frequency fs. In

contrast to [9], here we formulate the phase estimator without

using a baseband transformation, as it simplifies the formulas.

It is assumed that each STFT frequency band k is domi-

nated by the harmonic component closest to that band. This

assumption is well fulfilled in case the spectral resolution of

the STFT is fine enough to separate the harmonic compo-

nents. We denote the frequency of the harmonic h that is

closest to band k as fk
h .

For a single frequency component the clean speech spec-

tral phase can be computed analytically based on the phase of

the previous segment as

φ̂S(k, ℓ) = φ̂S(k, ℓ−1) + 2πfk
h

L

fs
, (3)

where the hat symbol is used to denote estimated values.

Thus, starting from an initial phase estimate at a voiced

speech onset ℓ0, we can recursively estimate the phase in

consecutive segments given that f0 is known. For bands di-

rectly containing a harmonic component we employ the noisy

phase for the initialization of (3).

In bands between the spectral harmonics the noisy phase

does not provide a decent initialization, since the speech en-

ergy is typically very low with respect to the noise energy. In

[9] it has been shown that the spectral phase between the har-

monic components is a function of the fundamental frequency

and the phase response of the spectral analysis window w (n).
Based on a phase estimate in frequency band k, obtained with

(3), the phases of the surrounding bands k+i can be estimated

by

φ̂S(k+i) = φ̂S(k)−φW

(
k−fk

h

N

fs

)
+φW

(
k+i−fk

h

N

fs

)
,

(4)

where we account for the influence of the phase response φW

of the spectral analysis window w(n).

With the above method at hand, it is possible to estimate

the spectral phase of voiced speech based on the fundamental

frequency. In practice, the fundamental frequency is unknown

and needs to be estimated, which will be discussed in the next

section.

3. FUNDAMENTAL FREQUENCY ESTIMATION

To estimate the fundamental frequency we employ the PE-

FAC algorithm proposed in [13] and implemented in [14].

There, the complex STFT-coefficients are first squared and

then mapped onto a logarithmic frequency axis ranging from

10 Hz to 4 kHz, yielding R(q) = |Y (q)|2, with q = log(f)
denoting the logarithmic frequency in ln(Hz). While on a lin-

ear frequency axis the distance between two harmonic com-

ponents is given by f0, the distances become independent of

f0 on a logarithmic axis, as

ln (fh) = ln (h+ 1) + ln (f0) . (5)

Thus, the relative distances between the harmonic peaks are

the same for all fundamental frequencies and only the abso-

lute position is shifted for different f0. This allows for an

2
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efficient search for the best f0 candidate, which can be formu-

lated as a correlation with a single function, defined as [13]

g (q) = ρ−
1

γ − cos(2πeq)
. (6)

Here, the parameter γ controls the width of the peaks of g(q),
while the normalization term ρ is chosen such that the mean

of g(q) is zero.

To improve the robustness against narrow-band noises

R(q) is modified as [14]

R′(q) = R(q)
S(q)

R(q)
. (7)

For this, R is smoothed across time and frequency to obtain

R(q), which is then compared to the long term average speech

spectrum S(q) computed offline. For narrow-band noise com-

ponents, R(q) locally increases with respect to S(q). Accord-

ingly, the ratio of the two in (7) reduces, effectively suppress-

ing the noise. An estimate of the fundamental frequency f̂0 is

then found via

R′′(q) =R′(q) ∗ g(−q) (8)

f̂0 = exp (q̂0) =exp

(
argmax

q
{R′′(q)}

)
, (9)

where the asterisk denotes convolution. To enforce continuity

of the fundamental frequency trajectories, we use the track-

ing algorithm of [14]. However, to keep processing latency

low, only information from past segments is utilized, i.e. the

tracking does not involve a look-ahead.

3.1. Voiced-Unvoiced Probability Estimation

Let H1 denote the hypothesis that a segment is voiced and

H0 the hypothesis that it is unvoiced. We are now interested

in computing the a posteriori probability that a signal segment

is voiced for a given set of features F , i.e. P (H1|F). With

Bayes’ theorem, we can obtain the posterior probability from

the likelihoods and priors as

P (H1|F) =
P (H1) p (F |H1)

P (H1) p (F |H1) + P (H0) p (F |H0)
, (10)

where we assume equal priors for voiced and unvoiced

speech, P (H1) = P (H0) = 0.5. As in [14] we derive

two features from R′(q) and R′′(q), while the likelihoods are

modeled by a Gaussian Mixture Model (GMM) with six mix-

tures. Training of the GMMs is performed using utterances

from the TIMIT training set degraded by additive noise taken

from the NOISEX-92 database. We use babble, white, and

car noise at SNRs ranging from -10 db to 20 dB in 5 dB steps.

The resulting probability P (H1|F) will be used in Sec-

tion 5 for a soft mix of phase sensitive and insensitive speech

enhancement.

With f̂0 and (3), (4) we can now estimate the clean speech

phase φS. In the next section we show how this information

can be utilized for an improved spectral amplitude estimation.

4. PHASE-SENSITIVE AMPLITUDE ESTIMATION

In [11] we proposed a novel phase-sensitive MMSE-optimal

estimator for the (compressed) clean speech spectral am-

plitudes, incorporating information about the clean speech

phases for an improved clean speech amplitude estimation.

In contrast to existing approaches like [1, 15, 2, 16], the clean

speech phase φS is not assumed to be uniformly distributed

between −π and π. Instead, the novel estimator is derived

under the assumption that φS is deterministic and known.

Further, the probability density function (PDF) of the speech

spectral amplitudes is modeled to follow a χ-distribution with

shape parameter µ [17, 16]. The estimator results in [11]

|̂S| =
(
E
(
|S|β | Y, φS

)) 1
β

=
√

1
2

ξ
µ+ξ

σ2
V

(
Γ(2µ+β)
Γ(2µ)

D
−(2µ+β)(ν)

D
−(2µ)(ν)

) 1
β

, (11)

with statistical expectation E(·), the compression parameter

β, the gamma function Γ(·), the a priori SNR ξ, the parabolic

cylinder function D·(ν) [18, Eq. (9.24)], and its argument

ν = −

√
2

ξ

µ+ ξ
ζ cos(φY − φS︸ ︷︷ ︸

∆φ

). (12)

Note that most spectral amplitude enhancement schemes in

the literature only employ the noisy amplitude and measures

derived from it, like the a priori SNR ξ = σ2
S /σ

2
V and the

a posteriori SNR ζ = |Y |2/σ2
V to obtain an estimate of the

clean speech amplitude |S|. Here, σ2
V = E

(
|V |2

)
and σ2

S =

E
(
|S|2

)
denote the power spectral densitys (PSDs) of the

noise and the speech, respectively. In contrast, the estimator

(11) proposed in [11] makes use of the phase difference ∆φ
as an additional measure to distinguish noise from speech.

Large deviations of the noisy phase φY from the clean phase

φS are only possible in bins that are dominated by the noise

component [19][11]. Accordingly, the larger the phase differ-

ence ∆φ, the more attenuation is applied. On the other hand,

time-frequency points where ∆φ is small, i.e. φY ≈ φS, are

preserved better as compared to phase-insensitive estimators.

In practical scenarios the clean speech phase is unknown

and only the phase of the noisy mixture φY can be observed.

With the phase estimation technique for voiced speech [9], we

now have an estimate of the clean speech phase φS at hand.

This phase estimate can then be used in (12) and (11) for an

improved amplitude estimation. As we do not have an estima-

tor for the phase in unvoiced speech, in the following section

a combination of phase-sensitive and insensitive speech en-

hancement techniques is proposed.

5. SPEECH ENHANCEMENT UNDER

VOICED-UNVOICED UNCERTAINTY

For the novel phase-sensitive amplitude estimator [11] a clean

speech phase estimate is needed in (12). With [9] phase es-

3
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timates can be obtained only in voiced speech, in unvoiced

speech or speech absence we lack an estimate of φS. Ac-

cordingly, the phase-sensitive amplitude estimator cannot be

applied in these regions. Therefore, outside of voiced regions

we do not assume the phase to be deterministic and known,

but rather uniformly distributed between −π and π. Like

for the phase-sensitive estimator [11], a χ-distribution for the

speech spectral amplitudes with the same shape parameter µ
as well as the same compression β is used. This leads to the

phase-insensitive counterpart proposed in [16].

Both, phase-sensitive and insensitive amplitude estima-

tors are run in parallel and are mixed based on the current

segment’s probability of being voiced P (H1|F),

|̃S| = P (H1|F) |̂S|[11] + P (H0|F) |̂S|[16]. (13)

For segments that show a high probability of being voiced,

P (H1|F) ≈ 1, the phase estimation scheme [9] is applica-

ble and the clean speech amplitude estimate |̃S| is obtained

using [11]. The lower P (H1|F), the less confident we are in

the phase estimates. Accordingly, the phase-insensitive am-

plitude estimate obtained by [16] dominates the mixture (13)

in unvoiced regions.

The evaluation of the proposed phase-sensitive amplitude

enhancement under voiced-unvoiced uncertainty is presented

in the next section.

6. EVALUATION

For the evaluation of the proposed algorithm, we take 128

speech samples from the TIMIT database at a sampling fre-

quency of 8 kHz, one half being uttered by male, the other

half by female speakers. The speech is deteriorated by addi-

tive babble noise [20] at SNRs ranging from 0 dB to 20 dB.

Neither the speech nor the noise used for evaluation have

been used in the training phase of the GMMs in Section 3.

The STFT segment length and shift are set to 32ms and

4ms, respectively. The fundamental frequency estimation is

performed on 90ms windows, centered around the STFT-

segments of the enhancement framework, increasing the

overall latency of the algorithm to a minimum of 45ms. The

unbiased MMSE noise power estimator [21] is employed to-

gether with the decision-directed approach [15] to estimate

the a priori SNR. Further, β = µ = 0.5 is used in (11) as

well as for the phase-insensitive amplitude enhancement [16].

Instead of the absolute phases φ̂S and φY, we employ

the phase changes ∆̂φS(ℓ) = φ̂S(ℓ) − φ̂S(ℓ−1) and ∆φY =
φY(ℓ)− φY(ℓ−1) in (12). This showed to be more robust to

phase estimation errors and makes the initialization of (3) at

voiced speech onsets unnecessary.

We now compare the novel mixture of phase-sensitive and

insensitive speech enhancement to phase-insensitive enhance-

ment alone in terms of speech quality. For this, PESQ is com-

puted as implemented in [14] for the noisy input together with

global input SNR [dB]

P
E

S
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S
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Fig. 1. PESQ-MOS evaluated on complete signals (top) and

in voiced speech only (bottom) for the noisy input and the

enhanced speech estimated with the proposed approach. As

a reference, the phase-insensitive approach [16] is also pre-

sented, using the same parameter setting, β = µ = 0.5.

the results of the phase-insensitive enhancement [16] and of

the proposed approach. The results are presented in Figure 1.

In the upper graph, it can be seen that the proposed approach

achieves an improvement of the PESQ mean opinion scores

(MOS) with respect to [16] for all input SNRs considered

here. For input SNRs of 10 dB or less an improvement of

the PESQ-MOS by around 0.1 points is achieved.

Note that as in unvoiced speech no phase estimate is avail-

able, the performance of the proposed algorithm is virtually

the same as for the phase-insensitive estimator [16]. The ben-

efit of the proposed approach comes in voiced speech, where

we have an estimate of the clean speech phase. This is de-

picted in the lower graph of Figure 1, where PESQ is evalu-

ated in voiced segments only. For SNRs up to 15 dB an addi-

tional improvement of more than 0.2 points compared to the

phase-insensitive estimator is achieved.

7. CONCLUSION

In this work we have presented a comprehensive speech en-

hancement setup that employs information about the clean

speech spectral phase. In voiced speech the clean speech

phase is estimated and utilized for an improved, phase-

sensitive clean speech amplitude estimation. In unvoiced

sounds, classical phase-insensitive amplitude estimation is

used. A novel combination of the two estimators based on

the probability of a signal segment being voiced has been

4
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presented. The proposed algorithm has been shown to out-

perform phase-insensitive amplitude enhancement alone in

terms of speech quality as predicted by PESQ.
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maintaining phase continuity,” in Proc. of Meetings of

the Acoustical Society of America, vol. 18, no. 055002,

Nov. 2012.

[13] S. Gonzalez and M. Brookes, “A pitch estimation filter

robust to high levels of noise (PEFAC),” in EURASIP

Europ. Signal Process. Conf. (EUSIPCO), Barcelona,

Spain, Sep. 2011, pp. 451–455.

[14] M. Brookes, “VOICEBOX: a speech processing toolbox

for MATLAB.” [Online]. Available: http://www.ee.ic.

ac.uk/hp/staff/dmb/voicebox/voicebox.html

[15] Y. Ephraim and D. Malah, “Speech enhancement using a

minimum mean-square error log-spectral amplitude es-

timator,” IEEE Trans. Acoust., Speech, Signal Process.,

vol. 33, no. 2, pp. 443–445, Apr. 1985.

[16] C. Breithaupt, M. Krawczyk, and R. Martin, “Parame-

terized MMSE spectral magnitude estimation for the en-

hancement of noisy speech,” in IEEE Int. Conf. Acoust.,

Speech, Signal Process. (ICASSP), Las Vegas, NV,

USA, Apr. 2008, pp. 4037–4040.

[17] I. Andrianakis and P. R. White, “MMSE speech spectral

amplitude estimators with Chi and Gamma speech pri-

ors,” in IEEE Int. Conf. Acoust., Speech, Signal Process.

(ICASSP), Toulouse, France, May 2006, pp. 1068–1071.

[18] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals

Series and Products, 7th ed. San Diego, CA, USA:

Academic Press, Feb. 2007.

[19] P. Vary, “Noise suppression by spectral magnitude esti-

mation – mechanism and theoretical limits,” ELSEVIER

Signal Process., vol. 8, pp. 387–400, May 1985.

[20] H. Kayser, S. D. Ewert, J. Anemüller, T. Rohdenburg,

V. Hohmann, and B. Kollmeier, “Database of multichan-

nel in-ear and behind-the-ear head-related and binaural

room impulse responses,” EURASIP J. Adv. Sig. Proc.,

2009.

[21] T. Gerkmann and R. C. Hendriks, “Unbiased MMSE-

based noise power estimation with low complexity and

low tracking delay,” IEEE Trans. Audio, Speech, Lan-

guage Process., vol. 20, no. 4, pp. 1383–1393, May

2012.

5


