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ABSTRACT

This paper presents a nonlinear mixing model for hyperspec-
tral image unmixing. The proposed model assumes that the
pixel reflectances are post-nonlinear functions of unknown
pure spectral components (referred to as endmembers) con-
taminated by an additive white Gaussian noise. The nonlinear
effects affecting endmembers are approximated by polyno-
mial functions leading to a polynomial post-nonlinear mixing
model. A Bayesian strategy is used to estimate the parame-
ters of this model yielding an unsupervised nonlinear unmix-
ing algorithm. Due to the large number of parameters to be
estimated, an efficient constrained Hamiltonian Markov chain
Monte Carlo method is developed to sample according to the
posterior of the Bayesian model. The performance of the re-
sulting unmixing strategy is evaluated on synthetic data.

Index Terms— Hyperspectral imagery, spectral unmix-
ing, Hamiltonian Monte Carlo, post-nonlinear model.

1. INTRODUCTION

Identifying macroscopic materials and quantifying the pro-
portions of these materials are major issues when analyzing
hyperspectral images. This spectral unmixing (SU) problem
has been widely studied for applications where the pixel re-
flectances are linear combinations of pure component spec-
tra. However, as explained in [1], the linear mixing model
(LMM) can be inappropriate for some hyperspectral images.
Nonlinear mixing models provide an interesting alternative
for overcoming the inherent limitations of the LMM. Several
models have been studied in the literature to handle specific
kinds of nonlinearities. In particular, the bilinear models re-
cently studied in [2–5] address the problem of scattering ef-
fects, mainly observed in vegetation or urban areas. Other
more flexible unmixing techniques have been also proposed
to handle wider class of nonlinearities, including radial basis
function networks and kernel-based models.

Part of this work has been supported by Direction Generale de
l’armement, French Ministry of defence, and by the Hypanema ANRProject
ANR Project n◦ANR- 12-BS03-003.

This paper considers a polynomial post-nonlinear mixing
model (PPNMM) that has recently shown interesting proper-
ties for the SU of hyperspectral images [6]. Precisely, we pro-
pose a fully unsupervised Bayesian unmixing algorithm based
on the PPNMM (estimating jointly the endmembers and the
other model parameters). However, the classical Bayesian es-
timators cannot be easily computed from the PPNMM pos-
terior distribution. To alleviate this problem, a Markov chain
Monte Carlo (MCMC) method is used to generate samples ac-
cording to this posterior. Due to the large number of param-
eters to be estimated we propose to use Hamiltonian Monte
Carlo (HMC) moves within a Gibbs sampler. HMCs are sim-
ulation strategies based on Hamiltonian dynamics which can
improve the convergence and mixing properties of classical
MCMC methods [7]. We investigate recent HMC methods
handling constrained variables [7, Chap. 5] that can be ap-
plied to our Bayesian model for spectral unmixing.

The paper is organized as follows. Section 2 introduces
the PPNMM for hyperspectral image analysis. Section 3
presents the hierarchical Bayesian model associated with the
proposed PPNMM and its posterior distribution. A Gibbs
sampling strategy coupling standard simulations (according
to the full conditional of the posterior) and constrained HMC
(CHMC) moves is presented in Section 4. Simulation re-
sults conducted on synthetic data are shown and discussed in
Section 5. Conclusions are finally reported in Section 6.

2. PROBLEM FORMULATION

2.1. Polynomial Post-Nonlinear Mixing Model

This section recalls the nonlinear mixing model used in [6]
for hyperspectral image SU. We consider a set ofN observed
spectrayn = [yn,1, . . . , yn,L]

T , n ∈ {1, . . . , N} whereL is
the number of spectral bands. Each spectrum is defined as
a nonlinear transformationgn of a linear mixture ofR end-
membersmr contaminated by additive noise

yn = gn

(
R∑

r=1

ar,nmr

)
+ en = gn (Man) + en (1)
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where mr = [mr,1, . . . ,mr,L]
T is the spectrum of the

rth material present in the scene,ar,n is its corresponding
proportion in thenth pixel, R is the number of endmem-
bers contained in the image andgn is a nonlinear func-
tion associated with thenth pixel. Moreover,en is an ad-
ditive independent and identically distributed (i.i.d) zero-
mean Gaussian noise sequence with varianceσ2, denoted as
en ∼ N

(
0L, σ

2IL
)
. Note that the usual matrix and vector

notationsM = [m1, . . . ,mR] andan = [a1,n, . . . , aR,n]
T

have been used in the right hand side of (1). As in [6], theN
nonlinear functionsgn are defined as second order polyno-
mial nonlinearities defined bygn (s) = s+ bn(s⊙ s), where
s ∈ R

L, bn is a real parameter, and⊙ denotes the Hadamard
(termwise) product. An interesting property of the resulting
PPNMM is that it reduces to the classical LMM forbn = 0.
Motivations for considering polynomial nonlinearities have
been discussed in [6]. Straightforward computations allow
the PPNMM observation matrix to be expressed as follows

Y = MA+ [(MA)⊙ (MA)] diag(b) +E (2)

where A = [a1, . . . ,aN ] is an R × N matrix, Y =
[y1, . . . ,yN ] and E = [e1, . . . , eN ] are L × N matrices,
and b = [b1, . . . , bN ]T is anN × 1 vector containing the
nonlinearity parameters. Moreover, diag(b) is anN × N
diagonal matrix containing the elements of the vectorb.

2.2. Abundance reparametrization

Due to physical considerations, the abundance vectorsan sat-
isfy the following positivity and sum-to-one constraints

R∑

r=1

ar,n = 1, ar,n > 0, ∀r ∈ {1, . . . , R} . (3)

To handle these constraints, we propose to reparameterize the
abundance vectors belonging to the set

S =

{
a = [a1, . . . , aR]

T

∣∣∣∣∣ar > 0,

R∑

r=1

ar = 1

}

using the following transformation

ar,n =

(
r−1∏

k=1

zk,n

)
×

{
1− zr,n if r < R
1 if r = R

. (4)

This transformation has been recently suggested in [8]. The
main motivation for using the latent variableszr,n instead of
ar,n is the fact that the constraints (3) (for thenth abundance
vectoran) express as

0 < zr,n < 1, ∀r ∈ {1, . . . , R− 1} (5)

for thenth coefficient vectorzn = [z1,n, . . . , zR−1,n]
T . As a

consequence, the constraints (5) are much easier to handle for
the sampling procedure than (3). The next section presents
the Bayesian model associated with the PPNMM for SU.

3. BAYESIAN MODEL

This section generalizes the hierarchical Bayesian model in-
troduced in [6] to estimate the unknown parameter vector
associated with the PPNMM containing the reparameterized
abundancesZ = [z1, . . . , zN ], the endmember matrixM, the
nonlinearity parameter vectorb and the additive noise vari-
anceσ2. This section summarizes the likelihood and the pa-
rameters priors that are used for this estimation.

3.1. Likelihood

Assuming prior independence between the observed pixels
and using (2), the joint likelihood of the observation matrix
Y can be expressed as

f(Y|M,Z, b, σ2) ∝ σ−NLetr

[
−
(Y −X)T (Y −X)

2σ2

]

(6)
where∝ means “proportional to”,etr(·) denotes the expo-
nential trace andX = MA + [(MA)⊙ (MA)] diag(b) is
anL×N matrix.

3.2. Parameter priors

To reflect the lack of prior knowledge about the abundances,
we propose to assign a prior distribution to the vectorzn en-
suring thatan is uniformly distributed in its definition do-
main. More precisely, we assign beta priorszn,r ∼ Be(R −
r, 1), r ∈ {1, . . . , R− 1} and assume prior independence be-
tween the elements ofzn. As explained in [8], this choice
yields an abundance vectoran uniformly distributed in the
setS. Assuming prior independence between the coefficient
vectors{zn}n=1,...,N leads to

f(Z) =

R−1∏

r=1

{
1

B(R− r, 1)N

N∏

n=1

zR−r−1
n,r

}
(7)

whereB(·, ·) is the Beta function.
Each endmembermr = [mr,1, . . . ,mr,L]

T is a re-
flectance vector satisfying the following constraints

0 ≤ mr,ℓ ≤ 1, ∀r ∈ {1, . . . , R} , ∀ℓ ∈ {1, . . . , L} . (8)

For each endmembermr, we propose to use a Gaussian prior
truncated on[0, 1]L to satisfy the constraints (8), i.e.,

mr ∼ N[0,1]L(m̄r, s
2IL). (9)

This prior requires to define the mean vectorsm̄r and the
noise variances2. We propose to select the mean vectorsm̄r

as the pure components previously identified by the nonlinear
EEA studied in [9] and referred to as “Heylen”. The variance
s2 reflects the degree of confidence given to this prior infor-
mation (s2 = 50 in our simulations).
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The PPNMM reduces to the LMM forbn = 0. Since the
LMM is probably relevant for most observed pixels it makes
sense to assign prior distributions to the nonlinearity parame-
ters that enforce sparsity for the vectorb. Consequently, the
following conjugate Bernoulli-Gaussian prior is assignedto
each parameterbn

f(bn|w, σ
2
b ) = (1− w)δ(bn) + w

1√
2πσ2

b

exp

(
−

b2n
2σ2

b

)
(10)

whereδ(·) denotes the Dirac delta function. Note that the
prior distributions for{bn}n=1,...,N share the same hyperpa-
rametersw ∈ [0, 1] andσ2

b ∈]0,+∞[. Moreover, the weight
w is the prior probability of having a nonlinearly mixed pixel
in the image. Assuming prior independence between the non-
linearity parameters{bn}n=1,...,N , the joint prior distribution
of the nonlinearity parameter vectorb is given by

f(b|w, σ2
b ) =

N∏

n=1

f(bn|w, σ
2
b ). (11)

A Jeffreys’ prior is assigned to the noise varianceσ2

f(σ2) ∝
1

σ2
I +(σ2) (12)

which reflects the absence of knowledge for this parameter.

3.3. Hyperparameter priors

The performance of the proposed Bayesian model for spectral
unmixing depends on the values of the hyperparametersσ2

b

andw. When the hyperparameters are difficult to adjust, it is
classical to include them in the unknown parameter vector, re-
sulting in a hierarchical Bayesian model [6, 10]. A conjugate
inverse-gamma prior is assigned toσ2

b , i.e., σ2
b ∼ IG (γ, ν)

where(γ, ν) are real parameters fixed to obtain a flat prior
for the varianceσ2

b ((γ, ν) will be set to(10−1, 10−1) in the
simulation section). A uniform prior distribution is assigned
to the hyperparameterw, i.e.,w ∼ U[0,1](w) since there is no
a priori information regarding the proportions of linearly and
nonlinearly mixed pixels in the image.

3.4. Joint posterior distribution

The joint posterior distribution of the unknown parameters
θ =

{
Z,M, b, σ2, σ2

b , w
}

can be computed using

f(θ|Y) ∝ f(Y|θ)f(θ) (13)

wheref(Y|θ) has been defined in (6). By assuminga priori
independence between the parametersZ, M, b andσ2 and
between the hyperparametersσb andw, the joint prior distri-
bution of theθ can be expressed as

f(θ) = f(Z)f(M)f(σ2)f(b|σ2
b , w)f(σ

2
b )f(w). (14)

Unfortunately, it is difficult to obtain closed form expres-
sions for the standard Bayesian estimators associated with
(13). Thus we propose to generate samples asymptotically
distributed according to (13). Due to the large number of
parameters to be sampled, we use HMC moves which allow
the number of sampling steps to be reduced and the mixing
properties of the sampler to be improved. The basic principles
of the HMC methods that are used to sample asymptotically
from (13) can be found in [11]. The generated samples are
then used to compute the MMSE estimator ofθ. The next
section defines the Gibbs sampler (including constrained
HMC moves) used to sample from (13).

4. GIBBS SAMPLER

The principle of the Gibbs sampler is to sample according to
the conditional distributions of the posterior of interest[12,
Chap. 10]. Due to the large number of parameters to be es-
timated, it makes sense to use a block Gibbs sampler to im-
prove the convergence of the sampling procedure. More pre-
cisely, we propose to sample sequentiallyM,Z, b, σ2, σ2

b and
w using six moves that are detailed in the next sections.

4.1. Sampling the coefficient matrixZ

Sampling fromf(Z|Y,M, b, σ2, σ2
b , w) is difficult due to the

complexity of this distribution. In this case, it is classical to
use an accept/reject procedure to update the coefficient matrix
Z (leading to a hybrid Metropolis-within-Gibbs sampler). It
can be shown that

f(Z|Y,M, b, σ2, σb, w) =

N∏

n=1

f(zn|yn,M, bn, σ
2), (15)

i.e., theN coefficients vectors{zn}n=1,...,N area posteriori
independent and can be sampled independently (in a parallel
manner). Straightforward computations lead to

f(zn|yn,M, bn, σ
2) ∝ exp

(
−
‖yn − xn‖

2

2σ2

)

× 1(0,1)R−1 (zn)

R−1∏

r

zR−r−1
n,r (16)

wherexn = gn (Man), 1(0,1)R−1 (·) denotes the indicator
function over(0, 1)R−1. The distribution (16) can be related
to a potential energy that is then used within a CHMC method
to update the vectorzn. For space limitations, we do not
detail this CHMC method. The reader is invited to consult a
separate technical report for more details [11].

4.2. Sampling the endmember matrixM

From (13) and (14), it can be seen that

f(M|Y,Z, b, σ2, s2, M̃) =
L∏

ℓ=1

f(mℓ,:|yℓ,:,Z, b, σ
2, s2, m̄ℓ,:)

3
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wheremℓ,: (resp.m̄ℓ,: andyℓ,:) is theℓth row ofM (resp. of
M̃ andY) and

f(mℓ,:|yℓ,:,Z, b, σ
2, s2, m̄ℓ,:) ∝ exp

(
−
‖yℓ,: − tℓ‖

2

2σ2

)

× exp

(
−
‖mℓ,: − m̄ℓ,:‖2

2s2

)
1(0,1)R (mℓ,:) (17)

with tℓ = ATmℓ,: + diag(b)
[(
ATmℓ,:

)
⊙
(
ATmℓ,:

)]
.

Thus, the rows of the endmember matrixM can be sampled
independently similarly to the CHMC procedure described in
the previous section by introducing theL potential energies
associated with eachmℓ,: (see [11] for details).

4.3. Sampling the nonlinearity parameter vectorb

Using (13) and (14), it can be easily shown that the condi-
tional distribution ofbn|yn,M, zn, σ

2, w, σ2
b is the following

Bernoulli-Gaussian distribution

bn|yn,M, zn, σ
2, w, σ2

b ∼ (1− w∗
n)δ(bn) + w∗

nN
(
µn, s

2
n

)

(18)
where

µn =
σ2
b (yn −Man)

T
hn

σ2
bh

T
nhn + σ2

, s2n =
σ2
bσ

2

σ2
bh

T
nhn + σ2

andhn = (Man)⊙ (Man). Moreover,

w∗
n =

w

βn + w(1− βn)
, βn =

σb

sn
exp

(
−

µ2
n

2s2n

)
. (19)

For eachbn, the conditional distribution (18) does not de-
pend on{bk}k 6=n. Consequently, the nonlinearity parameters
{bn}n=1,...,N can be sampled independently.

4.4. Sampling the noise varianceσ2

By considering the posterior distribution (13), it can be shown
thatσ2|Y,M,Z, b is distributed according to the following
inverse-gamma distribution

σ2|Y,M,Z, b ∼ IG

(
NL

2
,
tr
(
(Y −X)T (Y −X)

)

2

)
(20)

with tr(·) the matrix trace, from which it is easy to sample.

4.5. Sampling the hyperparametersσ2
b and w

Looking carefully at the posterior distribution (13), it can be
seen thatσ2

b |b, γ, ν is distributed according to the following
inverse-gamma distribution

σ2
b |b, γ, ν ∼ IG

(
n1

2
+ γ,

∑

n∈I1

b2n
2

+ ν

)
(21)

with I1 = {n|bn 6= 0}, n0 = ‖b‖0 (where‖·‖0 is the ℓ0
norm, i.e., the number of elements ofb that differ from zero)
andn1 = N − n0. Similarly, we obtain

w|b ∼ Be(n1 + 1, n0 + 1). (22)

Of course, sampling according to (21) and (22) is straightfor-
ward.

The small number of sampling steps is due to the high
parallelization properties of the procedure used to generate
the N coefficient vectors{zn}n=1,...,N , the N nonlinear-
ity parameters{bn}n=1,...,N and theL reflectance vectors
{mℓ,:}ℓ=1,...,L. After generatingNMC samples using the
moves detailed above, the MMSE estimator of the unknown
parameters can be approximated by computing the empiri-
cal averages of these samples, after an appropriate burn-in
period1. The next section studies the performance of the
proposed algorithm for synthetic hyperspectral images.

5. SIMULATIONS

The performance of the proposed SU algorithm is first evalu-
ated by unmixing three synthetic imagesI1, I2, I3 with N =
2500 pixels. TheR = 3 endmembers observed atL = 207
different spectral bands and contained in these images have
been extracted from the spectral libraries provided with the
ENVI software. The first imageI1 has been generated using
the LMM. The imageI2 has been generated according to the
PPNMM andI3 has been generated according to the general-
ized bilinear mixing model (GBM) presented in [5]. For each
image, the abundance vectors have been randomly generated
according to a uniform distribution in the admissible set de-

fined bySt =
{
a

∣∣∣0 < ar < 0.9,
∑R

r=1 ar = 1
}

to ensure

that there is no pure pixel in the images. All images have
been corrupted by an i.i.d Gaussian noise sequence of vari-
anceσ2 = 10−4, corresponding to an average signal-to-noise
ratioSNR ≃ 21dB for the three images. The nonlinearity co-
efficients are uniformly drawn in the set[0, 1] for the GBM.
The parametersbn have been generated uniformly in the set
[−0.3, 0.3] for the PPNMM.

Different estimation procedures have been considered for
the three mixing models. Two unmixing algorithms have been
considered for the LMM. The first strategy extracts the end-
members using the N-FINDR algorithm [14] and estimates
the abundances using the FCLS algorithm [15] (it is referred
to as “SLMM” for supervised LMM). The second strategy is a
Bayesian algorithm which jointly estimates the endmembers
and the abundance matrix [10] (it is referred to as “ULMM”
for unsupervised LMM). Two approaches have also been con-
sidered for the PPNMM. The first strategy uses the nonlinear
endmember extraction algorithm (EEA) studied in [9] and the
gradient-based approach based on the PPNMM studied in [6]

1The length of the burn-in period has been determined using appropriate
convergence diagnoses [13].
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for estimating the abundances and the nonlinearity parame-
ters. This strategy is referred to as “SPPNMM” (supervised
PPNMM). The second strategy is the proposed unmixing pro-
cedure referred to as “UPPNMM” (unsupervised PPNMM).
The unmixing strategy used for the GBM is the EEA studied
in [9] and the Bayesian algorithm presented in [5] for abun-
dance estimation.

The quality of the unmixing procedures can be evaluated
by the root normalized mean square error (RNMSE) defined

by RNMSE =
√∑N

n=1 ‖ân − an‖
2
/(NR), wherean and

ân are the actual and estimated abundance vectors for thenth
pixel of the image. Table 1 shows the RNMSEs associated
with the imagesI1 to I3 for the different estimation methods.
These results show that the UPPNMM performs better (in
term of RNMSE) than the other considered unmixing meth-
ods for the three images. Moreover, the proposed method pro-
vides similar results when compared with the ULMM for the
linearly mixed imageI1.

The quality of endmember estimation is evaluated by the
spectral angle mapper (SAM) defined by

SAM = arccos

(
〈m̂r,mr〉

‖m̂r‖ ‖mr‖

)

wheremr is therth actual endmember and̂mr its estimate.
Table 2 compares the performance of the different endmem-
ber estimation algorithms using the SAM (averaged over
the R = 3 endmembers (ASAM)). This table shows that
the proposed UPPNMM yields accurate endmember estima-
tions. Moreover, these results illustrate the robustness of
the PPNMM regarding model mis-specification. Note that
the ULMM and the UPPNMM provide similar results (in
term of ASAM) for the imageI1 generated according to the
LMM. Additional simulation results including reconstruc-
tion performance and simulations with different numbers of
endmembers can be found in [11].

Table 1. Abundance RNMSEs (×10−2): synthetic images.
I1 I2 I3

(LMM) (PPNMM) (GBM)

LMM
SLMM 3.78 13.21 6.83

ULMM 0.66 10.87 4.21

PPNMM
SPPNMM 4.18 6.04 4.13

UPPNMM 0.37 0.81 1.38

GBM 4.18 11.15 5.02

Table 2. SAMs (×10−2): synthetic images.
N-Findr ULMM Heylen UPPNMM

I1 4.95 0.52 6.38 0.42

I2 7.44 8.23 7.92 0.39

I3 7.46 4.66 7.19 1.63

6. CONCLUSIONS AND FUTURE WORK

We proposed a new hierarchical Bayesian algorithm for un-
supervised nonlinear spectral unmixing of hyperspectral im-

ages. This algorithm assumed that each pixel of the image
is a post-nonlinear mixture of the endmembers contaminated
by additive Gaussian noise. Due to the complexity of the
posterior distribution associated with the proposed Bayesian
model, constrained Hamiltonian Monte Carlo moves were in-
cluded into a Gibbs sampler to sample according to this poste-
rior. The MMSE estimator of the unknown model parameters
was then computed from the generated samples. Simulations
conducted on synthetic data illustrated the interest of thepro-
posed model for linear and nonlinear spectral unmixing and
provided promising results. An important advantage of this
model is its flexibility regarding the absence of pure pixelsin
the image. Future work includes the estimation of the number
of endmembers contained in the image and mixed using the
proposed post-nonlinear mixing model.
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