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ABSTRACT

Power Spectrum Blind Sampling (PSBS) has been recently
proposed as a strategy to reduce sampling rates below the
Nyquist frequency when the objective is not perfect signal
reconstruction but estimation of the power spectrum. In addi-
tion, sparse rulers have been proposed as multicoset patterns
that can be used in PSBS to reconstruct the power spectrum
even when the signal is not sparse. In this paper we propose a
sparse ruler design method based on coprime sampling, which
gives interesting solutions when long patterns have to be de-
signed.

Index Terms— Compressive sampling, spectrum sens-
ing, power spectrum blind sampling, multicoset sampling,
minimal sparse ruler

1. INTRODUCTION

Compressive Covariance Sampling or equivalently Power
Spectrum Blind Sampling is an interesting strategy to recon-
struct the power spectrum of a given signal from sub-Nyquist
rate samples [1,2]. Its application is clear in the area of spec-
trum sensing for cognitive radio [3], since we are dealing
with wideband signals and traditional sampling devices at the
corresponding Nyquist rate can not be implemented.

Although compressive sampling strategies [4,5] are closely
related to PSBS, it is not necessary to assume sparsity of the
spectrum in order to apply a PSBS strategy, as it has already
been shown [1,2]. Compressed measurements can be ob-
tained in different ways to reconstruct the power spectrum,
although in this paper we will focus on multicoset sampling
techniques [6,7].

Ariananda and Leus [1,2] have previously obtained a suf-
ficient condition for a multicoset sampling pattern can be used
to reconstruct the power spectrum with a low complexity so-
lution. In the same works they have proposed minimal sparse
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rulers [8] as a solution for the multicoset design problem. In
this context, Romero and Leus [9] have developed very re-
cently a new condition for perfect spectrum reconstruction,
proposing what they call a circular sparse ruler.

In this paper, we show that the conditions of Ariananda
and Leus can be weakened, and we obtain an alternative de-
sign method for the sparse ruler which is based on coprime
sampling as in [10,11]. This new design can be classified as
a particular family of circular sparse rulers as defined in [9].
The main advantage of the new design proposed here is that
long patterns can be easily designed and used for Power Spec-
trum Blind Sampling.

2. SAMPLING MODEL AND PROBLEM
STATEMENT

In this paper we consider a multicoset sampling strategy [6,7]
implemented with coprime sampling [10,11]. The input to
the sampling stage is a complex-valued wide-sense stationary
signal x(t) with bandwith B. The final goal of the scheme is
to use the multicoset samples obtained by coprime sampling
to estimate the power spectrum of x(t).

Fig. 1. Digital model of the sampling device.

This sampling device can be modeled as in [2]: a high
rate integrate and dump process followed by a bank of M
branches, each one consisting of a filtering operation followed
by a downsampling operation, as illustrated in Figure 1. Tak-
ing into account that multicoset sampling consists of selecting
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a Nyquist-rate sample ni in each block i, the coefficients of
the filter ci[n] can be written as

ci[n] =

{
1, n = −ni,
0, n 6= −ni,

(1)

where there is no repetition in ni, i.e. ni 6= nj , ∀i 6= j.
The output of the ith branch of this PSBS scheme is given

by

yi[k] = zi[kN ], (2)

where zi[·] is given by

zi[n] = ci[n] ∗ x[n]

=

0∑
m=1−N

ci[m]x[n−m].
(3)

It is shown in [2] that

ry = Rcrx, (4)

where ry ∈ C 1
2M(2L+1)(M+1)×1 and rx ∈ CN(2L+1)×1 are

given by

ry =
[
rTy [0] · · ·rTy [L]rTy [−L] · · ·rTy [−1]

]T
, (5a)

rx =
[
rTx [0] · · · rTx [L] rTx [−L] · · · rTx [−1]

]T
, (5b)

where L is a design parameter related to the support of rx[k]
and Rc ∈ C 1

2M(2L+1)(M+1)×N(2L+1) is given by

Rc =


Rc[0] O · · · O Rc[1]
Rc[1] Rc[0] O · · · O

O Rc[1] Rc[0] O
...

...
. . . . . . . . . O

O O O Rc[1] Rc[0]

 . (6)

The quantities ry[·] ∈ C 1
2M(M+1)×1, rx[·] ∈ CN×1, and

Rc[·] ∈ C 1
2M(M+1)×N are related to each other by

ry[k] =

1∑
l=0

Rc[l]rx[k − l], (7)

where

ry[k] =
[
ry1,y1

[k] · · · ry1,yM
[k] ry2,y2

[k] · · · ryM ,yM
[k]
]T
,

(8a)

Rc[k] =
[
rc1,c1 [k] · · ·rc1,cM [k]rc2,c2 [k] · · ·rcM ,cM [k]

]T
,

(8b)

rx[k] =
[
rx[kN ] rx[kN + 1] · · · rx[(k + 1)N − 1]

]T
.

(8c)

The quantities ryi,yj [·] ∈ C1×1 and rx[·] ∈ C1×1 are given
by

ryi,yj [k] = Ey
{
yi[l]y

∗
j [l − k]

}
, (9a)

rx[n] = Ex {x[m]x∗[m− n]} , (9b)

and rci,cj [·] ∈ CN×1 can be written as

rci,cj [k] =
[
rci,cj [kN ] rci,cj [kN − 1] · · ·

rci,cj [(k − 1)N + 1]
]T
,

(10)

where rci,cj [n] ∈ C1×1 is given by

rci,cj [n] =

0∑
m=1−N

ci[m]c∗j [m− n]. (11)

The number of cross-correlation functions to be consid-
ered for the PSBS is changed from 1

2M(M +1) toM2 in [2].
This extension increases the sizes of ry[·] ∈ CM2×1 and
Rc[·] ∈ CM2×N according to

ry[k] =
[
ry1,y1

[k] · · · ry1,yM
[k] ry2,y1

[k] · · · ryM ,yM
[k]
]T
,

(12a)

Rc[k] =
[
rc1,c1 [k] · · ·rc1,cM [k]rc2,c1 [k] · · ·rcM ,cM [k]

]T
.

(12b)

The condition for perfect power spectrum reconstruction
obtained by Ariananda and Leus, is that this matrix Rc has
full column rank. When the sampling pattern is given by the
set S of M samples

0 ≤ n0 < n1 < ... < nM−1 ≤ N − 1,

substituting (1) into (11), we obtain1

rci,cj [n] =

0∑
m=1−N

δ[m+ ni]δ[(m− n) + nj ]

= δ [((−ni)− n) + nj ]

= δ [n− (nj − ni)]
= δdij

.

(13)

This means that each row of Rc contains a single 1 and
the rest of its elements are 0, so it suffices to remind the dif-
ferences dij . If we keep all these differences in the set

D = {dij = |ni − nj | ; , ni, nj ∈ S},

the authors of [2] claim that we should obtainD ⊃ [0, N−1],
or at least, it suffices to achieveD ⊃ [0, bN/2c]. The reason is
the following: if D generates all the numbers d ∈ [0, bN/2c],

1The result in (13) is slightly different from [2, eq. (34)], where
rci,cj [n] = δ[n− (ni − nj)].
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then N − d generates all the numbers in [bN/2c , N ]. But we
notice that the conditions of [2] can be weakened: we assure
that it suffices to obtain a set of differences D such that every
number in [0, N − 1] can be written either as d ∈ D or as
N − d (where d ∈ D). In other words, we obtain this weaker
condition:

D ∪ {N − d, d ∈ D} ⊃ [0, N − 1].

This is equivalent to the definition of a circular sparse
ruler given in [9].

With this in mind, in this paper we design a general sam-
pling pattern which yields such a condition for N = 4n − 1.

3. A CLASS OF CIRCULAR SPARSE RULERS

Let us define N1 = 2n + 1, N2 = 2n − 1 which are odd
numbers, such that

N1N2 = (2n + 1) (2n − 1) = 4n − 1 = N.

Moreover, N1 and N2 are coprime: N1 − N2 = 2 which
means that their greatest common divisor is either 1 or 2, but
the latter is impossible because they are odd numbers.

We will also define p = 2n. As N1−p = 1 = p−N2, for
the same reason, p turns out to be coprime with N1 and with
N2.

The sampling pattern is defined as follows:

• On one hand, we consider the multiples of N1 which
are smaller than

⌊
N
2

⌋
= 22n−1 − 1, say,

0, N1, 2N1, · · · ,
⌊
N2

2

⌋
N1

because⌊
N2

2

⌋
N1 =

(
2n−1 − 1

)
(2n + 1) = 22n−1−2n−1−1.

• On the other hand, we also keep the corresponding mul-
tiples of N2,

N2, 2N2, · · · ,
⌊
N1

2

⌋
N2

which are also smaller than
⌊
N
2

⌋
= 22n−1 − 1 because⌊

N1

2

⌋
N2 = 2n−1 (2n − 1) = 22n−1 − 2n−1.

• Finally, we will also consider some multiples of p = 2n

p, 2p, 3p, ...,
(
2n−1 − 1

)
p.

But in this case we will keep the samples of the kind

N − p,N − 2p, 3p, ..., N −
(
2n−1 − 1

)
p

which have values greater than bN/2c .

In summary, we propose the sampling pattern

S = S1 ∪ S2 ∪ S3

where

S1 = {mN1,m = 0, ..., 2n−1 − 1} (14)
S2 = {sN2, s = 1, ..., 2n−1}
S3 = {N − lp, l = 1, ..., 2n−1 − 1}.

Notice that those numbers are different; in fact, mN1 6= sN2

because N1 and N2 are coprime and m < N2, 0 < s < N1.
Besides, mN1 6= N − lp 6= sN2 because

max (mN1, sN2) < N/2 < N − lp.

Hence, the cardinality of the set S of samples is exactly equal
to the sum of the cardinalities of the sample sets S1, S2, S3 :

M = 2n−1 + 2n−1 + 2n−1 − 1 = 3 · 2n−1 − 1

Our aim is to prove that the differences D of the set S,
and its reciprocal set of differences D′ = {N − d, d ∈ D}
verify

D ∪D′ ⊃ [0, N − 1]. (15)

Theorem 1 LetN = 4n−1, and let us consider the numbers

N1 = 2n + 1, N2 = 2n − 1, p = 2n.

Then the sampling pattern

S = S1 ∪ S2 ∪ S3 =

= {mN1,m = 0, ..., 2n−1 − 1} ∪
{sN2, s = 1, ..., 2n−1} ∪
{N − lp, l = 1, ..., 2n−1 − 1},

is a universal power spectrum estimation pattern (of length
3 · 2n−1 − 1) for signals of length N.

Proof. It suffices to prove that any d ∈ [0, N − 1] can be
written either as a difference d ∈ D, or as N − d ∈ D.

With our proposed design, the set of differences D is

D = S1 ∪ S2 ∪ S3 ∪D1,2 ∪D1,3 ∪D2,3

where Di,j contains all differences between nonzero samples
of the set Si and samples of the set Sj :

D1,2 = {mN1 − sN2,m = 1, ..., 2n−1 − 1, s = 1, ..., 2n−1}
D1,3 = {N − lp−mN1, l,m = 1, ..., 2n−1 − 1}
D2,3 = {N − lp− sN2, l = 1, ..., 2n−1 − 1, s = 1, ..., 2n−1}.

On the other hand, we will also consider the reciprocal set of
differences D′ = {N − d, d ∈ D} :

D′ = S′1 ∪ S′2 ∪ S′3 ∪D′1,2 ∪D′1,3 ∪D′2,3.
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Note that some of these reciprocal sets of differences are:

S′3 = {lp, l = 1, ..., 2n−1 − 1}
D′1,3 = {lp+mN1, l,m = 1, ..., 2n−1 − 1}
D′2,3 = {lp+ sN2, l = 1, ..., 2n−1 − 1, s = 1, ..., 2n−1}.

Let us show how every d ∈ [0, N − 1] is generated by at
least one of those sets of differences D ∪D′. To this aim, we
will use some consequences of Bezout’s identity: as N1 and
N2 are coprime, any integer d can be written as

d = mN1 − sN2 (m, s ∈ Z).

But we only havem = 0, ..., 2n−1−1, s = 1, ..., 2n−1. So
the differences D1,2 can generate any d ∈ [0, 22n−1 − 2n−1]
except for 4 types of numbers:

1. the numbers d which are multiples of p = 2n

2. the numbers l2n +mN1(but they belong to D′1,3)

3. the numbers l2n + sN2 (but they belong to D′2,3)

4. the numbers l2n +mN1 + sN2.

Let us explain why these 4 kinds of numbers do not belong
to D1,2. For the multiples of p = 2n, the diofantic equation

l2n = N1m−N2s

has a solution m = s = l2n−1 since

N1

(
l2n−1

)
−N2

(
l2n−1

)
= (N1 −N2) l2

n−1 = l2n,

but those values of m, s are out of range for any p. Neverthe-
less, the general solution of the diofantic equation is

l2n = N1

(
l2n−1 −N2r

)
−N2

(
l2n−1 −N1r

)
.

Let us prove that there does not exist any r, l such that those
m, s belong to the corresponding intervals:

0 ≤ m = l2n−1 −N2r ≤ 2n−1 − 1

1 ≤ s = l2n−1 −N1r ≤ 2n−1

In effect,

m = l2n−1 −
(
2n−1 − 1

)
r = (l − 1) 2n−1 + r

s = l2n−1 −
(
2n−1 + 1

)
r = (l − 1) 2n−1 − r

are out of range; even in the case l = 1, m = r = −s is
impossible since m ≥ 0, s > 0.

As a conclusion, the multiples of p = 2n cannot be written
asN1m−N2s (but they belong to S′3). The same happens for
lp+N1m, for lp+N2s and l2n+mN1+sN2. In other words,
these numbers do not belong to D1,2. This is the reason why
we had to include the samples S3 in the definition of our set
S.

In order to generate the numbers l2n +mN1 + sN2, let
us write them as (l +m+ s) 2n + (m− s) :

• if m 6= s, it is generated by D1,2 because it is not a
multiple of 2n.

• If m = s, this number is (l + 2) 2n which is a multiple
of p, so it belongs to S3 if l ≤ 2n−1 − 3. Otherwise,

– If l = 2n−1−2 the number is 22n−1 = bN/2c+1
which will be generated below by D2,3.

– if l = 2n−1 − 1 the number is d = 22n−1 + 2n

but N − d = 22n−1 − 2n − 1 which has already
been generated by D1,2.

So far, we have seen how to generate any difference d ∈
[0, 22n−1 − 2n−1]. It remains to prove that we can also gen-
erate any d ∈ [22n−1 − 2n−1, bN/2c]. Notice that(

2n−1 − s
)
p+ sN2 =

(
2n−1

)
p− s = 22n−1 − s.

This means that these numbers belong to D′2,3. Hence, for
s = 1, ..., 2n−1 − 1 we obtain all values of

22n−1 − 2n−1 + 1 ≤ d ≤ 22n−1 − 1 = bN/2c

that we had not been able to generate so far; now we have
guaranteed that they belong to D′2,3.

This way, we have generated all numbers d ∈ [0, bN/2c].
The rest of the differences (N − d) will generate the set
[bN/2c + 1, N ]. In this way we have finally derived the
condition that D ∪D′ ⊃ [0, N − 1] of Equation (15).

All these facts conclude the desired proof.

4. NUMERICAL EXAMPLES

Example 1: ForN = 15 = 42−1,we get the sampling pattern
made by multiples of N2 = 22 − 1 = 3, N1 = 22 + 1 = 5,
and 15− a multiple of 4 :

S = {0, 3, 6, 5, 11}.

There are only M = 5 samples, but their differences d are

D = {0, 3, 6, 5, 11, 2, 8, 1}

and N − d = 15− d provide

D′ = {15, 12, 9, 10, 4, 13, 7, 14}

so we finally have generated all numbers in [0, 15] since D ∪
D′ = [0, 15].

Recall that the block matrix[
Rc[0]
Rc[1]

]
,

made of N = 15 columns, will have full column rank. For
the sake of clarity, we can build these matrices: most of their
elements are 0, but we know that there is at least a 1 in the
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(d+ 1)-th column of Rc[0] (indexed by the differences d ∈
D) :

Rc[0] =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


and, for each d ∈ D, there is (by symmetry) at least a 1 in the
(N − d+ 1)-th column of Rc[1], indexed by d′ + 1, being
d′ ∈ D′ \ {N}. In other words, in this case we obtain 1’s in
the columns indexed as (16− d) where d ∈ D \ {0}.
Rc[1] =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


So it is straightforward to observe that the 16× 15 matrix[

Rc[0]
Rc[1]

]
has at least a 1 in each column, so it has full column rank, as
desired.

Example 2: ForN = 1023 = 45−1, the sampling pattern
is made by 16 multiples of N1 = 25 + 1 = 33, by 16 multi-
ples of N2 = 25 − 1 = 31, and by 15 multiples of 32 (that
will be subtracted from N = 1023). We have a total amount
of M = 47 samples whose differences actually generate all
1023 numbers in [0, 1022].

For the designed patterns the compression rate is

M

N
=

3
(
2n−1

)
− 1

4n − 1
≈ 3 · 2n−1

4n
=

3

2n+1
.

Notice that this approximated compression rate is halved
whenever we increase n. For instance, for n = 3 (N = 63)
we keep only M = 11 samples, so the real compression rate
is 11/63 = 17, 46%, which is smaller than the estimated
compression rate 3/16 = 18, 75%. For n = 4 we have an
approximated compression rate of 9, 375% for N = 255 (but
we only need M = 23 samples, so the compression rate is
actually 23/255 = 9, 01%).

In any case, we have a good approximation of the com-
pression rate, and for n = 5, 6, 7 we get 4, 68%, 2, 34%
and 1, 17% for, respectively, N = 1023, N = 4095 and
N = 16383.

5. CONCLUSION

We have designed a family of circular sparse rulers suitable
for reconstruction of the power spectrum at sampling rates
significantly below the Nyquist rate. These rulers can be seen
as multicoset patterns implemented by a simple coprime sam-
pling device. The required pattern, even if it is long, is easily
designed once its length is specified, which constitutes an in-
teresting advantage over minimal sparse rulers.
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