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ABSTRACT

This paper introduces a centroid-based (CB) supervised clas-
sification algorithm of textured images. In the context of
scale/orientation decomposition, we demonstrate the possibil-
ity to develop centroid approach based on a stochastic mod-
eling. The aim of this paper is twofold. Firstly, we intro-
duce the generalized Gamma distribution (GΓD) for the mod-
eling of wavelet coefficients. A comparative goodness-of-fit
study with various univariate models reveals the potential of
the proposed model. Secondly, we propose an algorithm to
estimate the centroid from the collection of GΓD parame-
ters. To speed-up the convergence of the steepest descent, we
propose to include the Fisher information matrix in the opti-
mization step. Experiments from various conventional texture
databases are conducted and demonstrate the interest of the
proposed classification algorithm.

Index Terms— textured images, Jeffrey divergence, gen-
eralized Gamma distribution, centroid, supervised classifica-
tion.

1. INTRODUCTION

Classification of textured images is used in a large field of ap-
plications ranging from the classification of orchards from re-
mote sensing images, to quality check of manufactured pieces
by comparison of internal structures. Among classification
methods, clustering approaches have known an increased in-
terest providing effective and tractable algorithms for various
domains. Classification techniques based on clustering such
as supervised centroid-based (CB) and unsupervised k-means
methods assume that (i) textured images are sorted in k sub-
collections of samples, i.e. the clusters, (ii) each cluster can
be represented by the most centrally localized object, i.e. the
barycenter or centroid. Evaluating a centroid implies to de-
fine an adapted measure of similarity/dissimilarity between a
set of estimated parameters characterizing each sample in the
cluster. For texture clustering, the main purpose is thus to de-
fine an effective set of parameters and a dissimilarity measure
which can be minimized in order to estimate the centroid co-
ordinates in the parameter space knowing the sub-set of sam-
ples associated to the cluster.

Over the last decade, numerous works devoted to texture
analysis have shown the interest to use jointly scale-space de-
composition and stochastic modeling for characterizing the
textural content [1, 2, 3, 4, 5, 6]. The more recent works pro-
pose parametric probability density function (pdf), i.e. prior
such as generalized Gaussian density (GGD) or Weibull den-
sity, to fit the empirical histogram of sub-band coefficients [2,
7]. Those works have further been extended by the use of
the generalized Gamma distribution (GΓD) which generalizes
both models [8, 9]. The distribution parameters of such mod-
els are then estimated and compose the signature of the tex-
ture while a probabilistic metric is used to measure similarity.
Previous works [2, 7] show that the Jeffrey divergence (JD),
increases significantly the classification rate in the framework
of stochastic models. Thereby, the parametric space forms
a smooth Riemannian manifold for which well-founded pro-
cessing can be derived. In this way, Choy and Tong proposed
in [3], for the GGD modeling, to compute a centroid from sev-
eral instances of parameter vectors from each sub-band for a
given class. However, they do not fully exploit the geometry
of the stochastic model during this estimation step, which is
one of the main contributions of the paper. The paper con-
tribution is twofold. Firstly, we validate the benefit of the
GΓD for the modeling of wavelet coefficients by a compara-
tive study with state-of-the-art univariate models. Secondly,
we propose a CB classification algorithm based on the GΓD
model. To speed-up the convergence of the centroid compu-
tation, we propose to include the Fisher information matrix of
the GΓD in the optimization step.

The paper is structured as follows. Section 2 introduces
the GΓD for the modeling of wavelet coefficients. The ben-
efit of such model is validated by a goodness-of-fit experi-
ment on the VisTex database. In Section 3, we derive the
proposed algorithm to compute the centroid. In Section 4,
we present some classification results to evaluate the perfor-
mance of the proposed CB classification algorithm on texture
databases. We provide also some comparisons with classical
univariate models. Conclusions and future works are finally
reported in Section 5.
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Fig. 1. Bar plots of the average Kolmogorov distance per-
formed for 40 classes of the VisTex database, for various uni-
variate models (GΓD, GGD, Weibull and Gamma).

2. THE UNIVARIATE GENERALIZED GAMMA
DISTRIBUTION

The probability density function of a generalized Gamma dis-
tribution (GΓD) is [10]:

pX(x;α, β, λ) =
βxβλ−1

αβλΓ(λ)
e−( xα )

β

, (1)

where x ∈ R+. α, β and λ are respectively the scale, power
and shape parameters. Note that the GΓD admits the Gamma,
Weibull and generalized Gaussian distributions (GGD) as
special cases.

To evaluate the benefit of the GΓD model to characterize
the textural content, we compute the empirical histogram of
the wavelet coefficients for each sub-band of textured images
from the VisTex database. This histogram is then modeled
by four univariate distributions i.e. GΓD, GGD, Gamma and
Weibull. The Kolmogorov distance, denoted dK , is next used
to evaluate the goodness-of-fit. The Kolmogorov distance is
defined as:

dK = sup
τ
|F (τ)− FN (τ)|. (2)

where FN (·) is the empirical cumulative distribution function
(cdf) and F (·) is the theoretical (hypothesized) cdf. Fig. 1
draws some bar plots of the average Kolmogorov distance per
class on the VisTex database for the four considered stochas-
tic models. In this experiment, the stationary wavelet trans-
form with Daubechies’ db4 filter has been considered. As ob-
served, the GΓD model has the lowest Kolmogorov distance,
exhibiting its interest for the modeling of wavelet coefficients.

To confirm the potential of the GΓD modeling, a texture
retrieval experiment has been conducted on the VisTex, Ou-
Tex and VisTex Complete (VisTexC) databases [2]. Retrieval
rates are displayed in Table. 1. As observed, the GΓD exhibits

Table 1. Indexing retrieval rate on the VisTex, OuTex and
VisTexC databases.

GΓD GGD Weibull Gamma
VisTex 76.73 76.31 76.13 75.23
OuTex 49.29 48.98 48.50 47.35

VisTexC 47.38 46.95 46.72 46.20

the highest retrieval rate. This model will hence be consid-
ered for modeling wavelet coefficients. In the following, a
supervised classification algorithm based on this model is in-
troduced. To this aim, the central element (barycenter) from a
collection of GΓD parameters should be computed, which is
the purpose of the next section.

3. BARYCENTRIC REPRESENTATION

Let I be a texture image. Let No and Ns be respectively the
number of orientation and scale of a multi-scale decomposi-
tion. I is hence decomposed into No ×Ns sub-bands. Let us
consider the parametric vector Θs,o of the pdf associated to
each sub-band. The collection TI of those parametric vectors
will represent the texture image I .

TI = {Θs,o|s = 1, . . . , Ns, o = 1, . . . , No} . (3)

The components Θs,o of the vector TI form a parametric Rie-
mannian manifold. In the sequel of the paper, we callM the
corresponding manifold.

3.1. Computing a centroid

Let (Tc,n)
NTr
n=1 beNTr training samples from the same class c.

In [3], Choy and Tong have introduced an iterative algorithm
to estimate the barycentric sample T̄c (also called centroid)
from this collection of samples. Let lc(T ) be the cost function
defined by:

lc(T ) =
1

NTr

NTr∑
n=1

m(T‖Tc,n), (4)

the centroid is obtained as the solution of the following opti-
mization problem:

T̄c = arg min
T∈M

lc(T ). (5)

The dissimilarity measure m between two instances of T is
computed as the sum of the dissimilarity measures SIM be-
tween all sub-band distributions at each scale and orientation:

m(Tc,n‖Tc′,n′) =

Ns∑
s=1

No∑
o=1

SIM(p(x; Θc,n,s,o)‖p(x′; Θc′,n′,s,o));

(6)

where p(x; Θc,n,s,o) is the probabilistic distribution which
models the sub-band coefficients x at scale s and orienta-
tion o.
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This paper introduces the natural gradient algorithm [11,
12] to solve the optimization problem defined in (5). Let T̄c
be the solution of (5), i.e. the minimizer of the cost func-
tion lc(T ). To speed-up the convergence, the Fisher infor-
mation matrix G(T ) is included with the gradient ∇lc(T ) of
the cost function in the optimization step. Then, the sequence(
T̄c,i
)∞
i=1

defined by:

T̄c,i+1 = ProjM
(
T̄c,i −G−1(T̄c,i)∇lc(T̄c,i)

)
, (7)

converges to the centroid T̄c. The operator ProjM repre-
senting the projection on the manifoldM assures that T̄c be-
longs to the manifoldM. Practically, on the VisTex database,
the projected gradient descent algorithm of [3] converges in
170 iterations whereas the proposed projected natural gradi-
ent converges in only 9 iterations to the same solution.

In the following, the computation of the centroid will be
applied to the GΓD since this model has been successfully
validated for the modeling of wavelet coefficients of texture
images [8]. Note that this methodology can be generalized
to any other stochastic models provided that a closed-form
expression of the similarity measure m and the Fisher infor-
mation matrix exist.

3.2. Application to the generalized Gamma distribution

The parameter space of a GΓD for one sub-band is repre-
sented by Θ = {α, β, λ}. The Jeffrey divergence (i.e. the
double sided Kullback-Leibler divergence) is considered as a
dissimilarity measure SIM between two GΓDs, its expression
is given in [8]:

JD(p(x; Θ)‖p(x; Θ′)) = −λ− λ′ +A+A′ +BC, (8)

where

A =
( α
α′

)β′
Γ(λ+ β′/β)

Γ(λ)
, A′ =

(
α′

α

)β
Γ(λ′ + β/β′)

Γ(λ′)

B =

(
ln
( α
α′

)
+

Ψ(λ)

β
− Ψ(λ′)

β′

)
, C = βλ− β′λ′,

where Ψ(z) is the digamma function. Next, by combining (6)
and (8), one obtains the dissimilarity measurem between two
samples. Then, to derive the cost function and to obtain its
gradient ∇lc(T ), the partial derivatives of the JD are com-
puted:

∂JD
∂α

(Θ,Θ′) =
C

α
+
β′

α
A− β

α
A′,

∂JD
∂β

(Θ,Θ′) = λB − CΨ(λ)

β2
− β′

β2
Ψ(λ+ β′/β)A

+ A′
[
ln

(
α′

α

)
+

Ψ(λ′ + β/β′)

β′

]
, (9)

∂JD
∂λ

(Θ,Θ′) = −1 + βB + C
Ψ(1, λ)

β

+ A [Ψ(λ+ β′/β)−Ψ(λ)] .

To compute the natural gradient, the 3×3 Fisher informa-
tion matrix of a GΓD is also required. Its components are:

gαα(Θ) =
λβ2

α2
, gαβ(Θ) = − 1

α
(λΨ (λ) + 1) ,

gα,λ(Θ) =
β

α
,

gββ(Θ) =
1

β2

[
1 + λΨ(1, λ) + λΨ(λ)2 + 2Ψ(λ)

]
,

gβλ(Θ) =− Ψ(λ)

β
, gλλ(Θ) = Ψ(1, λ).

(10)

where Ψ(1, z) is the trigamma function. Finally, by inject-
ing (9) and (10) in (7), one can iteratively estimate the cen-
troid for generalized Gamma distributed sub-bands.

3.3. Centroid representation

In this section, some experiments are conducted on real tex-
ture images to evaluate the potential of the centroid definition.
To represent the similarity of the texture images, a dimension
reduction algorithm is necessary since the manifoldM lives
in an high dimensional space. Here, we have considered an
isometric feature mapping (isomap) algorithm [13]. This al-
gorithm operates in three steps. First, a pairwise dissimilarity
matrix D1 is computed on the database using the JD:

D1(i, j) = JD(Ti, Tj), ∀i, j ∈ [1, . . . , NTr] . (11)

Since the JD does not satisfy the triangular inequality, a short-
est path algorithm, for instance Dijkstra, is applied to find the
shortest distance between two texture images. Hence, isomap
estimates the geodesic distances D2(i, j) between all pairs of
images on the manifoldM. Next, this matrix is transformed
into a covariance-like matrix using a Gaussian kernel, i.e.:

W = exp

{
− D2

2

2 · σ2

}
, (12)

Finally, a principal component analysis (PCA) is applied
on W . The top first eigenvectors (principal component) asso-
ciated to the highest eigenvalues of W allows an embedding
of texture images in a low dimensional space.

To evaluate the potential of a barycentric approach, 15
texture images issued from three different classes of the Vis-
Tex database are extracted. For a concise presentation, only
three texture classes have been considered in this experiment.
For each texture class, one centroid has been estimated. Three
centroids are hence computed, they are represented by the red,
blue and green squares in Fig. 2. Fig. 2.(a) and Fig. 2.(b)
draws a scatterplot of texture images in a subspace of dimen-
sion 2 composed by respectively the first two eigenvectors
(F1 and F2) and by the 2nd and 3rd eigenvectors (F2 and F3).
As observed the estimated centroids represent well the clus-
ter of each class, validating the interest of the centroid based
representation.
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(a)

(b)

Fig. 2. Embedding of texture images and centroid represen-
tation in a subspace of dimension 2 characterized by: (a) the
first two eigenvectors of W and (b) the 2nd and 3rd eigenvec-
tors of W.

4. RESULTS

4.1. Context

Let Ns be the number of sub-bands of a multi-scale decom-
position. Let us consider the parametric vector Θs of the pdf
associated to each sub-band. The collection T = (Θs)

Ns
s=1

of those parametric vectors will represent the textured im-
age. Let (Tc,n)

NTr
n=1 be NTr training samples from the same

class c. Then, the centroid of this collection of sample is de-
fined as T̄ = (Θ̄s)

Ns
s=1, where Θ̄s is the centroid computed

as the solution of (7) at sub-band s. For each texture class
c = 1, . . . , Ncl, one centroid T̄c is computed according to the
proposed algorithm.

Let Tt be a test sample. This sample is labeled to the
class ĉ, corresponding to the class of the closest centroid, i.e.

ĉ = arg min
c

JD(Tt‖T̄c), (13)

where the dissimilarity measure JD between two instances of
T is computed as the sum of the dissimilarity measures JD
between all sub-band distributions at each scale and orienta-
tion.

Table 2. Average kappa index on three texture databases for
the GΓD, GGD, Weibull and Gamma models.

GΓD GGD Weibull Gamma
VisTex 85.2% ± 1.4 81% ± 1.4 84.4% ± 1.4 83.8% ± 1.5
OuTex 56.7% ± 1.4 56.7% ± 1.5 55.3% ± 1.5 54.5% ± 1.5

VisTexC 55.3% ± 0.9 50.7% ± 1.0 54.5% ± 1.0 54.5% ± 1.0

To evaluate the performance of the supervised classifica-
tion algorithms, the database is split into a training database
and a disjoint testing database. Practically, NTr training sam-
ples are randomly selected for each texture class, the remain-
ing samples are used as testing samples. In this experiment,
three databases are considered: VisTex [14] with 40 classes
and Nsa = 16 images per class (128 × 128 pixels), OuTex
(TC 13) [15], 68 classes, 20 samples per class and VisTex
complete (VisTexC), 167 classes, 16 samples per class. In the
following, 100 Monte Carlo runs have been used to evaluate
the performance of the different classifiers (kappa index). The
kappa index refers to the proportion of consistent classifica-
tions obtained beyond that expected by chance alone [16, 17].

4.2. Results and discussion

In this experiment, the stationary wavelet decomposition
(with 2 scales) with Daubechies’ filter db4 is considered. Ta-
ble 2 displays the average kappa index for the four considered
stochastic models (GΓD, GGD, Weibull and Gamma) on the
VisTex, OuTex and VisTexC databases. Here, half of the sam-
ples are used for training. As observed on the three databases,
the proposed supervised classification algorithm based on the
GΓD allows a gain in terms of kappa index compared to other
conventional univariate modeling.

Fig. 3 draws the evolution of the kappa index as a function
of the number of training samples on the VisTex database for
the nearest neighbor classifier with GΓD model (1-NN GΓD,
solid line in magenta) and for the one centroid classifiers (1-
CB) with the GΓD (solid line in blue), GGD (dot-dashed line
in green), Weibull (dotted line in red) and Gamma (dashed
line in cyan) model assumptions.

As observed, a gain of 4 to 7 points is observed when a
centroid based classifier is considered compared to the nearest
neighbor classifier. Note also that since the GΓD generalizes
the GGD, Weibull and Gamma models, the CB classification
algorithm based on the GΓD for the modeling of wavelet co-
efficient outperforms the one based on more conventional uni-
variate models. A gain of 4%, 1% and 1.5% are respectively
observed compared to the GGD, Weibull and Gamma mod-
els, illustrating the benefit of the GΓD in a texture retrieval
experiment.
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Fig. 3. Evolution of the average kappa index as a function of
the number of training samples on the VisTex database for the
GΓD, GGD, Weibull and Gamma models.

5. CONCLUSION

In this paper, a centroid-based supervised classification has
been introduced to classify texture images. Based on the
generalized Gamma distribution (GΓD) for the modeling of
wavelet coefficients, we have derived a new algorithm to
compute the centroid from a collection of GΓD parameters.
Supervised classification results on various texture databases
have shown a gain compared to other conventional models.

Further works will concerns the extension of the proposed
work to a multi-barycentric classification algorithm in order
to handle the intra-class diversity of natural texture images.
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