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ABSTRACT 

 

In this paper, a space-variant cubic-spline interpolation 

(CSI) scheme by the use of the warped distance is 

developed to improve the performance. Furthermore, a 

modified overlap-save sub-image method is introduced to 

solve the boundary condition problems that occur between 

two neighboring subimages in the actual image. 

Experimental results show that the proposed improved CSI 

scheme can actually achieve a better PSNR than the 

existing interpolation algorithms including the original CSI 

scheme. 

 

Index Terms—Space-variant, cubic-spline interpolation, 

warped distance 

 

1. INTRODUCTION 

 

Interpolation estimates the intermediate values of a set of 

discrete samples, which is used extensively in the image 

data compression. There have been some interpolation 

functions, such as linear interpolation, cubic convolution 

interpolation (CCI) [1], cubic B-spline interpolation [2], [3], 

and so on. The main disadvantage of these interpolation 

schemes is that they are not generally designed to minimize 

the error between the original image and its reconstructed 

image. In 1981, based on the least-squares method with a 

special linear interpolation function, Reed first developed a 

linear spline interpolation scheme for re-sampling discrete 

image data [4]. In 2000, using an extension of the ideas of 

Reed, a modified version of the linear spline interpolation 

algorithm was developed by Truong et al., called the cubic-

spline interpolation (CSI) algorithm [5]. It is based on the 

least-squares method with the CCI function, which is 

superior in performance to the other existing interpolation 

schemes [1-4]. Recently, Y. Zhang et at. generated these 

ideas and proposed an interpolation-dependent image 

downsampling algorithm, where the downsampled image is 

obtained by means of the least-squares method [6]. 

The original CSI scheme is a space invariant 

technology, which is similar to the conventional space 

invariant method. In 1999, G. Ramponi changed the 

traditional space invariant interpolation operators into 

space-variant techniques by introducing the concept of the 

warped distance [7] and the results showed that it is able to 

reduce the interpolation error. In order to improve the 

performance, a space-variant CSI scheme by the use of 

warped distance is proposed in this paper. Furthermore, to 

solve the boundary condition problems that occur between 

two neighboring subimages during the implementation of 

the proposed space-variant CSI scheme, a modified 

overlap-save sub-image method [8] is introduced. Computer 

simulations on several standard images show that the 

proposed space-variant CSI scheme is far superior in 

performance to the existing interpolation algorithms. 

The remainder of this paper is organized as follows: 

the original CSI algorithm is briefly reviewed in Section II. 

The proposed space-variant CSI scheme is presented in 

considerable detail in Section III. Section IV illustrates the 

experimental results and discussions. Finally, conclusions 

are given in the last section.  

 

2. THE ORIGINAL CSI SCHEME 

 

It is well-known that the philosophy of the CSI scheme is to 

recalculate the sampled values of the image data by means 

of the least-squares method with the CCI formula. In this 
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section, the original CSI scheme is briefly reviewed based 

on matrix form. 

The constraint 1  in CCI kernel function is 

superior to 5.0  because it provides a better PSNR 

performance in the CSI scheme with the same arithmetic 

operations [9], so the parameter 1  is utilized in this 

paper. Therefore, from [9], the 1-D CCI kernel function 

)(tR  as shown in Fig. 1 is given by 

 

3 2

3 2

2 1,                  0 1

5 8 4,      1 2
0,                                   otherwise.

t t t

R t t t t t

    
      



             (1) 

Let   be a fixed, positive integer. Also let Y  denote 

the data function with size 1n  , X  the compressed 

values after downsampling to size 1n , where n  is an 

integer. Our desire is to approximate Y  by the values 

                                  ˆ Y HX                                           (2) 

in a least-squares fashion, where H  represents the 

interpolation matrix with size n n  , which consists of 

interpolation coefficients determined by the CCI function 

and  .  

One wants to find the optimal downsampled values 

such that  

                            ˆ   L X Y Y HX Y                        (3) 

is a minimum. To minimize (3), the partial differentiation of 

 L X  with respect to X  yields the following equation: 

                  2 0T
  


L

H HX Y
X

,                       (4) 

where TH  denote the transpose of the matrix H .  

Thus, the optimal downsampled values can be 

obtained by 

                      1T T
X H H H Y .                            (5) 

For the 2-D case, the CSI scheme based on matrix 

form can be accomplished by the use of 1-D CSI scheme 

with respect to each coordinate.  

 
3. THE PROPOSED SPACE-VARIANT CSI SCHEME 

 
For the original CSI scheme, the interpolation coefficients 

are constant during the process of interpolation. It is shown 

in [7] that the interpolation coefficients taking into account 

the local characteristics of the data to be interpolated can 

reduce the interpolation error. In what follows, a space-

variant CSI algorithm is proposed in such a way that it can 

improve the performance.  

 

3.1. The Proposed Algorithm 

 

As shown in Fig. 2, 1kx , kx , 1kx  and 2kx  are 

downsampled image data, and x  is the unknown pixel to be 

interpolated. Then, the distance between kx  and x  is 

defined by 

                                 ks x x  .                                    (6) 

For the traditional space invariant interpolation 

methods, s  is set to be 1/2 for 2  . In [7], the 

conventional space invariant methods can be changed into 

space-variant ones by the use of the warped distance, 

defined by 

                       ' ( 1),s s As s                                (7) 

where   is 1 or 2, A  indicates the local properties of data 

by evaluating the dissymmetry of the data adjacent to pixel 

x  defined by 

                 1 1 2| | | |

1
k k k kx x x x

A
L

    



                  (8) 

with 256L   for 8-bit luminance image. 

The proposed algorithm is based on the least-squares 

method with space-variant CCI interpolation by the use of 

warped distance to achieve better quality of reconstructed 
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Fig.1.  1-D CCI function. 
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Fig. 2.  Signal interpolation 
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image. Unfortunately, the interpolation matrix H , which 

consists of interpolation coefficients calculated according to 

the local properties of the sampled data, is unknown before 

downsampling. To solve this problem, the content-

dependent interpolation algorithm proposed in [6], whose 

iteration number is set to 2, is introduced in this paper.  

Let 0H  and 0X  be comprised of space invariant CCI 

coefficients and the result generated by the direct 

downsampling, respectively. The details of the proposed 

space-variant CSI scheme are described as follows: 

1) Initialize 0H  and 0X ; 

2) Compute H  based on 0X  according to (7); 

3) Compute X  according to (5). 

Similarly, the proposed 2-D space-variant CSI scheme 

is derived in the same manner as the 1-D scheme with 

respect to each coordinate. 

 
 

Fig. 3.   Illustration of the modified overlap-save subimage method 
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3.2. Block Implementation Utilizing Overlap-Save Sub-
image Method 
 
It is observed that the dimension of matrix H  is n n  , 

which demands considerable storage requirement and high 
computational complexity. To tackle this problem, a 
modified overlap-save sub-image method illustrated in 
Fig.3 is proposed in the following. Consider the source 
image data to be of size 20×20 pixels, as shown in Fig. 3(a). 
The symmetric extension scheme as given in [10] is utilized 
to solve the boundary conditions to obtain the extended 
image with size 24×24 pixels, as depicted in Fig. 3(b). Next, 
this extended image is divided into four overlapping 16×16 
subimages, as shown in Fig. 3(c). Note that each subimage 
of size 16×16 pixels overlaps each adjacent subimage with 

a border of width 6. It is shown experimentally that this 
border can be used to solve the boundary condition between 
the two neighboring subimages when using the CSI scheme. 
Next, these overlapping subimages are decimated by the 
proposed algorithm to be four downsampled overlapping 
subimages, as shown in Fig. 3(d). Then, the duplicated 
pixels in the four overlapping 8×8 subimages are deleted to 
become the four non-overlapping 5×5 subimages. To 
illustrate this, in Fig. 3(d), each subimage has an 
overlapping border of width 3. The first and last two 
columns of all the subimages are the duplicated columns in 
the overlapping border to be removed. Then, the above 
overlap-save method in the row direction is similarly 
accomplished. Fig. 3(e) illustrates the remaining samples of 
each subimage obtained by the use of this overlap-save 

 
  (a) 

              
 (b)                                                                                                                       (c) 

              
(d) (e) 

Fig. 4. Reconstructed and residual images of Peppers (zoom in) with a compression ratio 4:1. (a) Original Peppers image. (b) 
Reconstructed image by space-invariant CCI (PSNR=31.59dB). (c) Reconstructed image by space-variant CCI 
(PSNR=31.73dB). (d) Reconstructed image by space-invariant CSI (PSNR=32.62dB). (e) Reconstructed image by the 
proposed algorithm (PSNR=33.14dB). 
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method. A combination of these four non-overlapping 
subimages yields the entire compressed image, shown in 
Fig. 3(f).  

 
4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 
In this section, based on the ideas of Section III, the 
proposed space-variant CSI scheme can be shown to 
achieve a better PSNR performance. For some 2-D grey 
images with size 512×512, the experimental results with a 

compression ratio 4:1 ( 2  ) that use the space invariant 

CCI, space-variant CCI, space invariant CSI and proposed 
space-variant CSI schemes are shown in Table I. In the 
experiment, each original image is downsampled to obtain 

data samples with a compression ratio of 4:1 ( 2  ).  

Moreover, the reconstructed values between the samples are 
applied to obtain the reconstructed image with a ratio of 4:1 

( 2  ), thereby yielding the corresponding PSNR values. 

Upon the inspection of Table I, the proposed space-variant 
CSI scheme achieves the best PSNR in comparison with 
other three methods. For the gray 512×512 Lena image at 

the same compression ratio 4:1 ( 2  ), the PSNR value 

obtained by the proposed space-variant CSI scheme is 
higher by 1.7dB, 1.55dB and 0.69dB than the space 
invariant CCI, space-variant CCI, and space invariant CSI 
schemes, respectively. 

Fig. 4 shows the reconstructed and residual images of 

Peppers at the same compression ratio of 4:1 ( 2  ) using 

the space invariant CCI, space-variant CCI, space invariant 
CSI, and the proposed space-variant CSI schemes. It can be 
found that the Peppers image reconstructed by the proposed 

algorithm has a better subjective quality in comparison with 
the other three interpolation schemes. 
 

5. CONCLUSIONS 
 
In this paper, a space-variant CSI scheme that combines the 
least-squares with a space-variant CCI kernel is developed 
in order to improve the original CSI scheme for image data 
compression. Simulation results show that this proposed 
space-variant CSI scheme yields a better subjective quality 
and PSNR performance than existing interpolation methods 
for the reconstructed image. 
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TABLE I     PSNR (dB) COMPARISONS 
OF DIFFERENT METHODS 

 
          

Image 
Space-     

invariant   
CCI 

Space-     
variant     

CCI 

Space-     
invariant   

CSI 

         
Proposed

Peppers 31.59 31.73 32.62 33.14 
Lake 29.37 29.42 30.64 31.01 

Couple 29.17 29.12 30.50 30.83 
Crowd 32.93 33.16 33.83 34.60 
Lena 34.03 34.18 35.04 35.73 

Airplane 30.49 30.64 31.92 33.14 
Boat 29.27 29.23 30.82 31.16 

Bridge 25.71 25.68 27.18 27.46 

 

5


