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ABSTRACT

Among different Nonnegative Matrix Factorization (NMF)
approaches, probabilistic NMFs are particularly valuable
when dealing with stochastic signals, like speech. In the
current literature, little attention has been paid to develop
NMF methods that take advantage of the temporal depen-
dencies of data. In this paper, we develop a hidden Markov
model (HMM) with a gamma distribution as output density
function. Then, we reformulate the gamma HMM as a proba-
bilistic NMF. This shows the analogy of the proposed HMM
and NMF, and will lead to a new probabilistic NMF approach
in which the temporal dependencies are also captured inher-
ently by the model. Furthermore, we propose an expectation
maximization (EM) algorithm to estimate all the model pa-
rameters. Compared to the available probabilistic NMFs that
model data with Poisson, multinomial, or exponential dis-
tributions, the proposed NMF is more suitable to be used
with continuous-valued data. Our experiments using speech
signals shows that the proposed approach leads to a better
compromise between sparsity, goodness of fit, and temporal
modeling compared to state-of-the-art.

Index Terms— Hidden Markov Model (HMM), Nonneg-
ative Matrix Factorization (NMF), Expectation Maximization
(EM) algorithm.

1. INTRODUCTION

In recent years, nonnegative matrix factorization (NMF) has
attracted the interest of many researchers. As a result, differ-
ent approaches have been developed to obtain NMF using a
variety of criteria [1].

In its basic form, NMF finds a locally optimal and de-
terministic approximation of a nonnegative matrix x in the
form of a product of two nonnegative matrices v and w, i.e.,
x ≈ vw where x is a matrix of dimension K × T , v is a
matrix of dimension K × I , and w is a matrix of dimension
I×T , where I is the number of the basis vectors, and usually
I < K and I < T .

In this paper, we develop an HMM with gamma output
density functions and show that it is equivalent to a probabilis-
tic NMF. A number of NMF algorithms have been recently
derived in a probabilistic framework [2–5]. In [4], a Bayesian
approach was proposed to perform NMF. In this method, it
is assumed that data is drawn from an exponential distribu-
tion while the rate parameter of the distribution is factorized

using an NMF. The model is constructed in such a way that
it is possible to infer the optimal number of the NMF basis
vectors automatically. However, an important aspect of data
(which exists in most of the potential applications), the tem-
poral correlation, is ignored. For example, temporal depen-
dencies are very important in source separation and speech
enhancement [6].

Hidden Markov modeling is a strong yet simple approach
to capture the temporal aspects of the processes. Methods
that combine the NMF paradigm (which in principle ignores
the temporal dependencies) and the HMM paradigm have re-
cently been introduced [5, 7]. In [7], the Itakura-Saito NMF
was combined with HMM. In this approach, each sample of
the complex data was assumed to be a sum of some complex-
valued Gaussian components with covariance matrices fac-
torized using NMF. Moreover, a separate Markov chain was
considered to govern the transitions between different states
of each component independently. Another nonnegative hid-
den Markov model (NHMM) was proposed in [5] in which
the model has a Markov chain with a number of states. In
each state, the observed data is assumed to be drawn from a
multinomial mixture model. That is, given a state, the data is
assumed to be generated by a linear combination of the non-
negative basis vectors corresponding to that state. Neverthe-
less, due to the assumption of a multinomial distribution, the
observed data has to be scaled to be integer. The integer as-
sumption was also used in [2] where the data was assumed to
be drawn from a Poisson distribution. Although the observed
data might be scaled to be integer in practice, the scaling level
will directly affect the assumed noise level in the model, and
it might create side problems.

In this paper, we devise an HMM in which the output
density functions are assumed to be gamma distributions to
cope with nonnegative data. The choice of a gamma distribu-
tion provides a more flexible modeling than the exponential
distribution considered in [4]. Also, the approach does not
need data-scaling as required in [2, 5]. Then, we reformu-
late the gamma HMM as a probabilistic NMF. Each state of
the HMM leads to a basis vector in the NMF representation,
and the temporal correlation of the data is imposed through
the transition probability between the states. To take care of
the time-varying level of the data (e.g., the long-term level
of the speech energy), an explicit gamma prior distribution
is considered over the gain variable. We propose an efficient
EM algorithm to estimate the time-varying and the stationary
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model parameters. The main contribution of this work, in ad-
dition to the novel HMM structure and the proposed approach
to estimate HMM parameters, is the NMF formulation of the
developed HMM, which shows how a gamma HMM can be
used as a probabilistic NMF. We demonstrate the new NMF
and compare it with state-of-the-art by applying it to speech
signals.

2. GAMMA HMM AND ITS FORMULATION AS
NMF

In this section, the gamma HMM is derived, and the proposed
structure to handle the time varying level of the signal is ex-
plained. Then, it is shown how the proposed gamma HMM
can be used to obtain an NMF representation of a nonnega-
tive matrix. In the following, we represent random variables
with capital letters, e.g., XK×T = [Xkt] denotes a matrix of
random variables with elementsXkt. The corresponding real-
izations are shown as x=[xkt]. Also, we denote the tth column
of matrix X as Xt and the tth column of matrix x is denoted
as xt. Moreover, the conditional distribution fX|Y (x | y) is
shown as f(x | Y = y) or f(x | y) for simplicity.

2.1. HMM with Gamma Distributions

The proposed HMM models the multidimensional nonneg-
ative signal X with a limited number of hidden states. In
the field of speech processing, where the short-time magni-
tude/power spectral vectors are commonly used as the input
matrix for NMF, these hidden states can be identified, for ex-
ample, with different speech sounds (phones). Let us assume
that the hidden random variable St (at time t) of the HMM can
take one of I available discrete values i = 1, . . . I . Because
of the nonnegative nature of the signal, the output probability
density functions of the HMM are modeled as gamma distri-
butions. Hence, the conditional distribution of each element
of X is given as:

f (xkt | St = i, Gt = gt) =
xaki−1
kt

(gtbki)
aki Γ (aki)

e
−xkt
gtbki , (1)

where Gt is the short-term stochastic gain parameter, k is the
dimension index, Γ(·) is the Gamma function, and aki and
bki are state-dependent shape and scale parameters. Thus, the
expected value and variance are obtained as E(Xkt | St =
i, Gt = gt) = akigtbki, and var(Xkt | St = i, Gt = gt) =
aki(gtbki)

2. In modeling the speech spectra, the choice of the
gamma distribution is motivated by the super-Gaussianity of
the speech DFT coefficients [8].

We assume that, given the hidden state St, different ele-
ments of the vector Xt are independent [8]. Hence, the HMM
output density function is given as:

f (xt | St = i, Gt = gt) =

K∏
k=1

f (xkt | St = i, Gt = gt) . (2)

Gt is allowed to take only nonnegative values, and is assumed
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Fig. 1. A schematic representation of the HMM with gain model-
ing. The shape and scale parameters a and b are conditioned on the
hidden state.

to have a gamma distribution for the sake of tractability:

f (gt) =
gφ−1t

θφt Γ (φ)
e−gt/θt , (3)

with φ and θt being the shape and scale parameters, respec-
tively. In practice, the scale parameters bki are estimated to
describe the signal statistics for different states while θt is
meant to only model the long-term level changes of the sig-
nal. The sequence of hidden states is characterized by a first-
order Markov chain, with initial state probability mass vector
p, with elements pi = f [St=0 = i], and a transition proba-
bility matrix q, with elements qij = f [St = j | St−1 = i].
Fig. 1 illustrates this model.

2.2. Gamma HMM as a Probabilistic NMF

The HMM described in Subsection 2.1 can alternatively be
formulated as a probabilistic NMF. A usual approach in prob-
abilistic NMFs [2–4] is to approximate an input matrix with
an expected value that is obtained under the model assump-
tions. Then, the expected value is decomposed into a product
of two nonnegative matrices. By doing so, a condensed rep-
resentation of data can be achieved. Following this approach,
we use an expected value of Xt to derive an NMF representa-
tion of the given vector xt. That is, xt ≈ x̂t = vwt where x̂t
refers to the expected value. We calculate x̂t by considering
the posterior distribution of the state and gain variables con-
ditioned on the entire sequence of the observed signal over
time, x:

x̂t =

I∑
i=1

∫
E (Xt | St = i, gt) f (St = i, gt | x) dgt. (4)

Let us denote the hidden random states by a one-of-I indicator
vector St, i.e. Sit = 1 if the Markov chain at time t is in state
i and Sjt = 0 for j 6= i. Accordingly, the realizations are
referred to as st.

We define the basis matrix vK×I = [vki] as vki = akibki.
Using this notation, we can write vt = vst. Therefore, re-
calling the paragraph following (1), we have E[Xt | st, gt] =

2
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gtvst. Eq. (4) can now be written as:

x̂t = v
∑
st

stf (st | x)

∫
gtf (gt | st,x) dgt. (5)

Denoting wt =
∑

st
stf(st | x)E(gt | st,x) , we can

write: x̂t = vwt. Thus, we have x ≈ vw, i.e., x is factorized
into two nonnegative factors, a basis matrix v and an NMF
coefficients matrix w. In an extremely sparse case where
f(s′t | x) = 1 only for one state s′t, depending on time t,
and all the other states have zero probability, we will have
wt = s′tE(gt | s′t,x).

The conditional state probabilities f(st | x) can be calcu-
lated using the forward-backward algorithm [9]. To finish our
NMF derivation, we need to evaluate E(gt | st,x). Noting
that gt depends only on the observation at time t, the poste-
rior distribution of the gain variable can be obtained by using
the Bayes rule as:

f (gt | st,x) =
f (xt | gt, st) f (gt)

f (xt | st)
. (6)

Since the denominator of (6) is constant, using (2) and (3) we
get:

ln f (gt | st = 1i,x) ∝

− 1

θt
gt +

(
φ− 1−

K∑
k=1

aki

)
ln gt −

(
K∑
k=1

xkt
bki

)
1

gt
. (7)

Eq. (7) corresponds to a generalized inverse Gaussian (GIG)
distribution [10] with parameters ϑ = φ −

∑K
k=1 aki, ρ =

θ−1t , and τ =
∑K
k=1 b

−1
ki xkt. Hence,∫

gtf (gt | st,x) dgt = E (gt | st,x) =
Kϑ+1

(
2
√
ρτ
)√

τ

Kϑ
(
2
√
ρτ
)√

ρ
,

where Kϑ (·) denotes a modified Bessel function of the sec-
ond kind.

3. PARAMETER ESTIMATION

We propose an EM algorithm to estimate the model param-
eters, denoted by λ = {p,q,a,b, φ, θ}. These parameters
can be obtained online for a given signal x. Alternatively, the
time-invariant parameters p,q,a,b, and φ can be obtained
given a training data set. To obtain the NMF representation
of a new vector in this case, the only unknown parameter is θ,
which should be estimated online.

In the E step of the EM, a lower bound is obtained on the
log-likelihood of data, and in the M step, this lower bound
is maximized. Let Z represent the hidden variables in the
model. The EM lower bound takes the form

L
(
f (z | x, λ) , λ̂

)
= Q

(
λ̂, λ

)
+ const., where (8)

Q
(
λ̂, λ

)
=

∫
f (z | x, λ) ln

(
f
(
z,x | λ̂

))
dz, (9)

where λ includes the estimated parameters from the previous
iteration of the EM, and λ̂ contains the new estimates to be
obtained.

For our problem, Z = {S,G} in which S = {S1, . . . ST },
and G = {G1, . . . GT } where T is the number of data sam-
ples, i.e., the number of columns of x. Now, Q(λ̂, λ) can be
written as:

Q
(
λ̂, λ

)
= Q̂

(
λ̂, λ

)
+
∑
t,i

ωt (i)

∫
f (gt | xt, St = i, λ)

(
ln f

(
gt | λ̂

)
+ ln f

(
xt | gt, St = i, λ̂

))
dgt. (10)

Here, Q̂(λ̂, λ) includes the terms for optimizing the Markov
chain parameters p and q, which is done similarly to [9]. The
state probabilities ωt (i) = f(St = i | x, λ) are obtained by
the forward-backward algorithm in which:

f (xt | St = i) =

∫ ∞

0

f (xt | St = i, Gt = gt) f (gt) dgt. (11)

Inserting (2) and (3) in (11), and using the definition of the
GIG distribution [10] we get:

f (xt | St = i) =
2τϑ/2Kϑ

(
2
√
ρτ
)

ρϑ/2θφt Γ (φ)

K∏
k=1

xaki−1
kt

baki

ki Γ (aki)
,

with ρ = 1/θt, ϑ = φ−
∑K
k=1 aki, τ =

∑K
k=1 xktb

−1
ki .

To obtain the new estimate of the rest of the parameters,
(10) is differentiated w.r.t. parameters of interest, and the re-
sult is set to zero. Obtaining the gradient w.r.t. b̂ki and setting
it to zero yields the following estimate:

b̂ki =

∑
t ωt (i)xktE

(
G−1t | xt, St, λ

)
âki
∑
t ωt (i)

def
=
µki
âki

. (12)

Inserting (12) into (10), and setting the gradient of the objec-
tive function w.r.t. âki to zero yields:

ϕ (âki)− ln (âki) =∑
t ωt (i) (lnxkt − E (lnGt | xt, St, λ)− lnµki)∑

t ωt (i)
, (13)

where ϕ(u) = d
du ln Γ(u) is the digamma function. There-

fore, a is first estimated using (13), then (12) is solved to ob-
tain b̂. Similarly, φ̂ and θ̂ are obtained by first estimating the
shape parameter φ as:

ϕ
(
φ̂
)
−ln

(
φ̂
)

=

∑
t,i ωt (i) (E (lnGt | xt, St, λ)− ln ξt)∑

t,i ωt (i)
,

with ξt defined as:

ξt =

∑
i ωt (i)E (Gt | xt, St, λ)∑

i ωt (i)
,

and then using φ̂ to estimate θt:

θ̂t = ξt/φ̂. (14)

An alternative estimate for θt can be obtained for the situ-
ation where the long-term level of the signal remains constant

3
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Fig. 2. Demonstration of the proposed NMF using speech signal.
The figure shows the equation x ≈ vw for a speech sequence. On
the left is the sequence of speech spectra and on the right are the non-
negative basis matrix v and the coefficient matrix w. As is shown in
the figure, w is a sparse matrix.

within a duration, say from sample 1 to T1. Using this knowl-
edge, we obtain a new estimate for θ, which is referred to as
θT1

(in contrast to θt in (14)). The new estimate θ̂T1
is ob-

tained as:

ξT1
=

∑T1

t=1

∑
i ωt (i)E (Gt | xt, St, λ)∑T1

t=1

∑
i ωt (i)

,

θ̂T1
= ξT1

/φ̂. (15)

Due to the concavity of the logarithm of the gamma density
function in aki and bki around the stationary points a,b, these
update rules are guaranteed to increase the overall log likeli-
hood score of the parameters. As mentioned earlier, the pos-
terior distribution of the gain variable is a GIG distribution for
which E(G−1) and E(lnG) are given in [10].

4. DEMONSTRATION

We applied our proposed probabilistic NMF to sequences of
short-term speech spectra to demonstrate its capability. For
this purpose, we estimated the stationary parameters of the
model using 600 sentences from the training set of the TIMIT
database with a sampling rate of 16 kHz.

The speech signal corresponding to each sentence of the
database was segmented, windowed, and transformed into the
frequency domain by applying the discrete Fourier transform
(DFT). As the observation for NMF, the periodogram coeffi-
cients (magnitude-squared DFT coefficients) were used. The
DFT was implemented using a frame length of 320 samples
with 50% overlapped windows using a Hann window. The
periodograms were stored as columns in a matrix of dimen-
sion K × T with K = 161 and T specified by the length
of the sentence. Finally, the training signal was obtained by
concatenating the spectra of all the sentences.

We learned 55 basis vectors (I = 55) for speech, i.e., v
is a nonnegative matrix of dimension 161 × 55. Therefore,
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Fig. 3. NMF approximations for the same input as in Fig. 2. The ap-
proximations obtained using the proposed NMF and the NHMM ap-
proach [5] are shown in the middle and right plots, respectively. Al-
though most of the harmonic structure is gone using the new method,
the approximation is less distorted compared to NHMM.

each basis vector corresponds roughly to one phoneme and
presents the expected spectrum of that phoneme.

The proposed gamma HMM was used to find an NMF ap-
proximation of the periodogram of speech sentences in a pre-
dictive manner. Periodograms are used here for the purpose
of demonstration, but depending on the application, it might
be preferable to apply the NMF on other types of smoothed
spectral estimates. The time-varying scale parameter θt was
estimated online using (15) with φ being fixed to the value
obtained using the training data.

Fig. 2 shows the power spectrogram of a sample sentence
“His captain was thin and haggard and his beautiful boots
were worn and shabby” uttered by a female speaker, and its
NMF representation. As was expected, the NMF coefficient
matrix w is very sparse, and each basis vector is active for
multiple subsequent time frames. The reason for the sparsity
is that in a practical scenario, only one of the states is domi-
nant in each time frame (a probability close to 1), which leads
to a large coefficient for the corresponding basis vector in the
NMF representation.

As Fig. 2 shows, the basis vectors represent a smooth es-
timate of the power spectra of different phonemes, and they
do not have the fine structure in contrast to the detailed repre-
sentation available in the original spectrogram. This indicates
the potentiality of the proposed scheme in dealing with noise
and undesired fluctuations when applied to a more realistic
application such as speech recognition or enhancement.

The obtained NMF approximation for the same input as
in Fig. 2 is shown in Fig. 3. The approximations obtained
using the proposed NMF and the NHMM approach ( [5], 60
states with 1 basis vector each) are shown in the middle and
right plots, respectively. As can be seen in the figure, the new
method leads to a cleaner and smoother representation. The
NHMM representation, on the other hand, has introduced a
lot of distortions but also has preserved the harmonic structure
better.
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To have a better understanding of the obtained factoriza-
tion, the derived NMF representation was compared to two
state-of-the-art approaches using objective measures. First,
we considered two variants of NHMM: a sparse NHMM for
which 60 states with 1 spectral component each was learned
offline, and a non-sparse NHMM for which an HMM with 40
states with 10 basis vectors per state was learned. Second,
we considered Kullback-Leibler divergence based NMF (KL-
NMF) [2]. Aimed to compare the goodness of fit as a function
of the sparsity level, the NMF coefficient vectors, wt, were
constrained to have a specified l0 norm (number of non-zero
elements). For each value of l0 in KL-NMF, the training was
repeated to have the best possible basis matrix under the spar-
sity constraint.

The log-spectral distortion was evaluated between the in-
put periodogram and the NMF estimate as the relative figure-
of-merit. Moreover, to get a measure of the obtained corre-
lation in the NMF coefficient vectors, the number of the con-
secutive vectors, xt, for which the same basis vector had the
largest coefficient was computed, and it was normalized by
the total number of columns in x. In other words, if the sys-
tem is in the state i in the current time frame, this measure
(denoted as Prep) gives the probability of staying in the same
state in the next time frame.

The results averaged over 192 sentences from TIMIT
core test set are shown in Table 1. The experiment shows
that the proposed approach leads to a sparse representation
in which a tradeoff between accurate fitting and temporal
modeling is achieved. The accuracy of the approximation
using the gamma HMM is comparable to that of KL-NMF
with l0 norm > 10. However, the gamma HMM gives a
higher probability to continuously stay in the same state. The
NHMM approaches provide the worst fit to the observed data,
but the probability of staying in the same state is the high-
est using this method. By comparing sparse and non-sparse
NHMM variants we see that the non-sparse NHMM provides
both better temporal modeling and better fit as each state of
the NHMM has a greater flexibility to model the observation.

In terms of the computational complexity, gamma HMM
is substantially faster than the NHMM. When applied for the
online factorization, the computational requirements of the
gamma HMM is comparable with that of the KL-NMF, but
for the offline training it is more demanding.

5. CONCLUSION
The present theoretical study was aimed at deriving a proba-
bilistic NMF approach. To employ the temporal correlations
of the signal, we developed an HMM with gamma output
density functions (gamma HMM). Moreover, another gamma
distribution was considered to govern the long-term level of
the signal. We showed the analogy of the gamma HMM and
NMF, and hence, derived a new probabilistic NMF. This work
forms a basis for many applications, including speech and im-
age processing. Currently, we are investigating the applica-
tion of the method in speech enhancement, and will report the

Table 1. Comparison between the proposed NMF and state-of-the-
art methods. l0 norm is the number of non-zero elements in each
column of w. The mean and standard deviation of the measures
over 192 sentences are shown in the table.

Method l0 norm log SD (dB) Prep

Proposed NMF 1 9.4± 0.7 0.59± 0.06
Sparse NHMM 1 16.4± 1.8 0.6± 0.05

Non-sparse NHMM 10 14.3 ± 1.9 0.66± 0.05
Sparse KL-NMF 1 12.6± 1.5 0.53± 0.07

Non-sparse KL-NMF 10 10.3± 1.1 0.53± 0.08
Non-sparse KL-NMF 55 7.8± 1 0.51± 0.05

findings in a separate publication.
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