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LMR EA 4535 and ARC-Mathématiques FR 3399 du CNRS, France
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ABSTRACT

We introduce a new BSS approach, based on modified
Kullback-Leibler divergence between copula densities, for
both independent or dependent source component signals.
In the standard case of independent source components, the
proposed method improves the mutual information (between
probability densities) procedure, and it has the advantage
to be naturally generalized to separate mixtures of depen-
dent source components. Simulation results are presented
showing the convergence and the efficiency of the proposed
algorithms.

Index Terms— Blind source separation, Modified Kullback-
Leibler divergence between copulas, Mutual information.

1. INTRODUCTION

Blind source separation (BSS) is an important problem in
signal processing which has been addressed in the last three
decades. BSS consists of recovering unobserved signals
called sources from observed mixtures of them. We consider
instantaneous linear mixtures

x(t) := As(t) + n(t) ∈ Rp, (1)

where A ∈ Rp×p is an unknown non-singular mixing ma-
trix, s(t) := (s1(t), . . . , sp(t))

> is the unknown vector of
source signals to be estimated, as precisely as possible, from
x(t) := (x1(t), . . . , xp(t))

>, the vector of observed signals
(the number of sources and the number of observations are
assumed to be equal). The presence of additive noise n(t)
within the mixing model complicates significantly the BSS
problem. Typically, additive noise is either considered as an
additional set of sources, or it is reduced by applying some
form of preprocessing. The goal is to estimate the vector
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source signals s(t) using only the observed signals x(t). The
estimate y(t) of the source signals s(t) can be written as

y(t) = Bx(t), (2)

where B ∈ Rp×p is the de-mixing matrix. The question is
how to obtain a good de-mixing matrix B̂ which has to be
close to the ideal solution A−1, in using only the observed
signals x(t)? It is well known, by Darmois theorem, that
if the sources components are mutually independent and at
most one component is gaussian, a consistent estimate B̂ of
A−1 (up to scale and permutation indeterminacies) is the one
that makes the components of the vector y(t) independent,
see e.g. [1]. The corresponding signal ŷ(t) := B̂x(t) is the
estimate of the source signals s(t). Under the above hypothe-
ses, many procedures have been proposed in the literature.
Some of these procedures use second or higher order statis-
tics, see [2], [3] and the references therein, other consist of
optimizing (on the de-mixing matrix space) an estimate of a
measure of dependence of the components of the vector y(t).
As measures of dependence used in BSS, we find in the liter-
ature the criterion of mutual information [4] [5], the criteria
of α, β and Renyi’s-divergences [6] [7], and the criteria of
φ-divergences [8]. The procedures based on minimizing es-
timates of mutual information are considered as the most ef-
ficient, since this criterion can be estimated efficiently, other
procedures using other divergences lead to robust method for
appropriate choice of divergence criterion [8]. In this paper,
we will focus on the criterion of mutual information (called
also modified Kullback-Leibler divergence), viewed as mea-
sure of difference between copulas, and we will use it to pro-
pose a new BSS approach that applies both in the standard
case of independent source components, and in the non stan-
dard one of dependent source components. In the following,
we will show that the mutual information of a random vector
Y := (Y1, . . . , Yp)

> can be written as the modified Kullback-
Leibler divergence (KLm-divergence) between the copula of
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independence and the copula of the vector. Then, we propose
a separation procedure based on minimizing an appropriate
estimate of KLm-divergence between the copula of indepen-
dence and the copula of the vector. This approach applies in
the standard case, and we will show that the proposed cri-
terion can be naturally extended to separate mixture of de-
pendent source components. The proposed approach can be
adapted also to separate complex-valued signals. In all the se-
quel, we assume that at most one source is gaussian, and we
will treat separately the case of independent source compo-
nents, and then the case of dependent source components. In
[9], the authors proposed a BSS algorithm (for independent
sources) based on minimizing a distance between the param-
eter of the copula of the estimated source and the value of the
parameter corresponding to independence. [10] proposed a
different criterion combining the mutual information between
probability densities and Shannon entropy of parametric mod-
els of copulas.

2. AN INTRODUCTION ON COPULA

Consider a random vector Y := (Y1, . . . , Yp)
> ∈ Rp,

p ≥ 1, with joint distribution function (d.f.) FY(y) :=
FY(y1, . . . , yp) := P(Y1 ≤ y1, . . . , Yp ≤ yp), and contin-
uous marginal d.f.’s FYj (yj) := P(Yj ≤ yj), for all j =
1, . . . , p. The characterization theorem of Sklar [11] shows
that there exists a unique p-variate function CY(·) : [0, 1]p 7→
[0, 1], such that, FY(y) = CY(FY1

(y1), . . . , FYp(yp)),
for all y := (y1, . . . , yp)

> ∈ Rp. The function CY(·) is
called a copula and it is in itself a joint d.f. on [0, 1]p with
uniform marginals. We have for all u := (u1, . . . , up)

> ∈
[0, 1]p, CY(u) = P

(
FY1

(Y1) ≤ u1, . . . , FYp(Yp) ≤ up
)
.

Conversely, for any marginal d.f.’s F1(·), . . . , Fp(·), and any
copula function C(·), the function C(F1(y1), . . . , Fp(yp))
is a multivariate d.f. on Rp. On the other hand, since the
marginal d.f.’s FYj (·), j = 1, . . . , p, are assumed to be con-
tinuous, then the random variables FY1

(Y1), . . . , FYp(Yp) are
uniformly distributed on the interval [0, 1]. So, if the compo-
nents Y1, . . . , Yp are statistically independent, then the cor-
responding copula writes C0(u) :=

∏p
j=1 uj , ∀u ∈ [0, 1]p.

It is called the copula of independence. Define, when it ex-
ists, the density copula (of the random vector Y) cY(u) :=

∂p

∂u1···∂upCY(u), ∀u ∈ [0, 1]p. Hence, the density copula
of independence c0(·) is the function taking the value 1 on
[0, 1]p and zero otherwise, namely,

c0(u) := 1[0,1]p(u), ∀u ∈ [0, 1]p. (3)

Let fY(·), if it exists, be the probability density of the random
vector Y, and, respectively, fY1

(·), . . . , fYp(·), the marginal
probability densities of the components Y1, . . . , Yp. Then, a
straightforward computation shows that, for all y ∈ Rp, we
have

fY(y) =

p∏
j=1

fYj (yj)cY(u), (4)

where u := (u1, . . . , up)
> := (FY1(y1), . . . , FYp(yp))

>. In
the monographs by [12] and [13], the reader may find detailed
ingredients of the modeling theory as well as surveys of the
commonly used semi-parametric copulas.

3. MUTUAL INFORMATION AND COPULAS

The mutual information of a random vector

Y := (Y1, . . . , Yp)
>

is defined by

I(Y) :=

∫
Rp
− log

∏p
j=1 fYj (yj)

fY(y)
fY(y) dy1 . . . dyp. (5)

It is called also the modified Kullbak-Leibler divergence
(KLm-divergence) between the product of the marginal den-
sities and the joint density of the vector. Note also that
I(Y) =: KLm(

∏p
j=1 fYj , fY) is nonnegative and takes the

value zero if and only if the components of the vector are
independent. An equivalent formula of (5) is

I(Y) := E

(
− log

∏p
j=1 fYj (Yj)

fY(Y)

)
, (6)

where E(·) is the mathematical expectation. Using the rela-
tion (4), and applying the change variable formula in multiple
integrals, we can show that the mutual information I(Y) can
be written as

I(Y) =

∫
[0,1]p

− log(
1

cY(u)
)cY(u) du =: KLm(c0, cY)

= E
(
log cY(FY1

(Y1), . . . , FYp(Yp))
)

=: −H(cY),

where H(cY) :=
∫
[0,1]p

− log (cY(u)) cY(u) du is the
Shannon entropy of the copula density cY(·). The rela-
tion above means that the mutual information of the random
vector Y can be seen as the KLm-divergence between the
independent density copula c0(·), see (3), and the density
copula cY(·) of the random vector Y. We summarize the
above results in the following Proposition.

Proposition 1. Let Y ∈ Rp be any random vector with con-
tinuous marginal distribution functions. Then, the mutual in-
formation I(Y) of Y can be written as the KLm-divergence
between the density copula c0 of independence and the cop-
ula density of the vector Y:

I(Y) =

∫
[0,1]p

− log(
1

cY(u)
)cY(u) du =: KLm(c0, cY)

= E
(
log cY(FY1(Y1), . . . , FYp(Yp))

)
. (7)

Moreover, KLm(c0, cY) is non negative and takes the value
zero if and only if cY(u) = c0(u) =: 1[0,1]p(u), ∀u ∈
[0, 1]p, namely, iff the components of the vector Y are inde-
pendent.
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4. A SEPARATION PROCEDURE FOR
INDEPENDENT SOURCES THROUGH COPULAS

In this section, we describe our approach based on mini-
mizing a non parametric estimate of the KLm-divergence
KLm(c0, cY), assuming that the source components are
independent. Denote by S := (S1, . . . , Sp)

> the random
source vector, X := AS the observed random vector and
Y := BX the estimated random source vector. The dis-
crete (noise free) version of the mixture model (1) writes
x(n) := As(n), n = 1, . . . , N. The source signals
s(n), n = 1, . . . , N, will be considered as N realizations
of the random source vector S, and then x(n),y(n) :=
Bx(n), n = 1, . . . , N, are, respectively, N realizations of
the random vectors X and Y := BX. In view of Proposi-
tion 1, the function B 7→ KLm(c0, cY) is non negative and
achieves its minimum value zero if and only if B = A−1

(up to scale and permutation indeterminacies). In other
words, we have A−1 = arg infBKLm(c0, cY). Hence,
to achieve separation, the idea is to minimize on B some
statistical estimate K̂Lm(c0, cY), of KLm(c0, cY), con-
structed from the data y(1), . . . ,y(n). The separation matrix
is then estimated by B̂ := arg infB K̂Lm(c0, cY), lead-
ing to the estimated source signals ŷ(n) = B̂x(n), n =
1, . . . , N. Based on the equality (7), we propose to esti-
mate the KLm-divergence KLm(c0, cY) by a plug-in type
procedure. We obtain then the estimate K̂Lm(c0, cY) :=
1
N

∑N
n=1 log ĉY(F̂Y1

(y1(n)), . . . , F̂Yp(yp(n))), where,

ĉY(u) :=
1

Nh1 · · ·hp

N∑
m=1

p∏
j=1

k

(
F̂Yj (yj(m))− uj

hj

)
,

(8)
for all u ∈ [0, 1]p, is the kernel estimate of the copula den-
sity cY(·), and F̂Yj (x), j = 1, . . . , p, is the estimate of the
marginal distribution function FYj (x) of the random variable
Yj , at any real value x, defined by

F̂Yj (x) :=
1

N

N∑
n=1

K

(
yj(n)− x

hj

)
, (9)

where K(·) is the primitive of a kernel k(·), a symmetric cen-
tered probability density. In order to estimate the marginal
distribution functions, we will take as kernel a standard gaus-
sian density. A more appropriate choice of the kernel k(·), for
estimating the copula density, can be done according to [18],
which copes with the boundry effect. The bandwidth param-
eters h1, . . . , hp in (8) and in (9) will be chosen according to
the Silverman’s rule of thumb, see [14].

4.1. The direct approach

In order to compute the estimate of the de-mixing matrix B̂,
we can use a gradient descent algorithm taking as initial ma-
trix B0 = Ip, the p × p identity matrix. The gradient in (B)

of K̂Lm(c0, cY) can be computed explicitly from the defini-
tions of the estimates. We propose then the following algo-
rithm.

Data : the observed signals x(n), n = 1, . . . , N
Result : the estimated sources ŷ(n), n = 1, . . . , N
Initialization : y0(n) = B0x(n), B0 = Ip. Given
ε > 0 and µ > 0 suitably choosen
Do
• Update B and y :

Bk+1 = Bk − µ
d

dB
K̂Lm(c0, cY)

∣∣∣∣
B=Bk

yk+1(n) = Bk+1x(n), n = 1, . . . , N
• Until ‖Bk+1 −Bk‖ < ε
ŷ(n) = yk+1(n), n = 1, . . . , N

Algorithm 1: A copula based BSS algorithm for inde-
pendent source components.

4.2. The two steps approach

This method proceeds in two steps: the first one consists of
spatial whitening and the second one consists to apply a series
of Givens rotations, minimizing the estimate of the KLm-
divergence. The whitened mixture vector z can be written as
z(n) = Wx(n), n = 1, . . . , N, where W is the whitening
p × p-matrix. Let U be a unitary p × p- matrix, namely, the
matrix U satisfying UU> = Ip. It can be written as U(θ) :=∏

1≤i<k≤pG(i, k, θm), where G(i, k, θm) is the p×p-matrix
with entries

G(i, k, θm)j,l :=



cos(θm) if j = i, l = i
or j = k, l = k;

sin(θm) if j = i, l = k;
− sin(θm) if j = k, l = i;
1 if j = l;
0 else,

for all 1 ≤ j, l ≤ p, and θm ∈]−π/2, π/2[,m = 1, . . . , p(p−
1)/2, are the rotation angles (the components of the vector
θ). The estimated source signals take then the form y(n) =
U(θ)z(n), n = 1, . . . , N, and the separating matrix is B =

U(θ)W. The estimate K̂Lm(c0, cY), of KLm(c0, cY), can
be seen as a function of the parameter vector θ. Let θ̂ :=

arg infθ K̂Lm(c0, cY), which can be computed by a descent
gradient (in θ) algorithm. The de-mixing matrix is then es-
timated by B̂ := U(θ̂)W, leading to the estimated source
signals

ŷ(n) = B̂x(n) = U(θ̂)Wx(n), n = 1, . . . , N.

We summarize the above methodology in the following algo-
rithm.
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Data : the observed signals x(n), n = 1, . . . , N
Result : the estimated sources ŷ(n), n = 1, . . . , N
Whitening and Initialization : z(n) := Wx(n),
y0(n) = U(θ0)z(n). Given ε > 0 and µ > 0
Do
• Update θ and y :

θk+1 = θk − µ
d

dθ
K̂Lm(c0, cY)

∣∣∣∣
θ=θk

yk+1(n) = U(θk+1)z(n), n = 1, . . . , N
• Until ‖θk+1 − θk‖ < ε
ŷ(n) = yk+1(n), n = 1, . . . , N

Algorithm 2: A two steps BSS algorithm for indepen-
dent source components.

5. A SOLUTION TO THE BSS PROBLEM FOR
MIXTURES OF DEPENDENT SOURCE

COMPONENTS

Assume that we dispose of some prior information about
the density copula of the random source vector S. Note
that this is possible for many practical problems, it can be
done, from realization of S, by a model selection procedure
in parametric copula density models

{
cα(·); α ∈ Θ ⊂ Rd

}
typically indexed by a multivariate parameter α, see [15].
The parameter α can be estimated using maximum semi-
parametric likelihood, see [16] and [17]. Denote by α̂ the
obtained value of α and cα̂(·) the copula density modeling
the dependency structure of the source components. Ob-
viously, since the source components are assumed to be
dependent, cα̂(·) is different from the density copula of in-
dependence c0(·). Hence, we naturally replace in the above
criterion KLm(c0, cY), c0 by cα̂. Moreover, we can show
that B 7→ KLm(cα̂, cY) is non negative and achieves its
minimum value zero if B = A−1 (up to scale and permuta-
tion indeterminacies), i.e., A−1 = arg infBKLm(cα̂, cY).
Note also that the criterion KLm(cα̂, cY) can be written
as KLm(cα̂, cY) = E

(
log
(

cY(FY1 (Y1),...,FYp (Yp))

cα̂(FY1 (Y1),...,FYp (Yp))

))
. So

as before, we propose to estimate the de-mixing matrix by
B̂ := arg infB K̂Lm(cα̂, cY), where K̂Lm(cα̂, cY) :=

1
N

∑N
n=1 log

(
ĉY(F̂Y1 (y1(n)),...,F̂Yp (yp(n)))

cα̂(F̂Y1 (y1(n)),...,F̂Yp (yp(n)))

)
. The estimates

of copula density and the marginal distribution functions are
defined as before. The solution B̂ can be computed by a
descent gradient algorithm. The estimated source signals are
ŷ(n) = B̂x(n), n = 1, . . . , N ; see Algorithm 3.

6. SIMULATION RESULTS

In this section, we present simulation results for the proposed
method. We dealt with instantaneous mixtures of three kinds

Data : the observed signals x(n), n = 1, . . . , N
Result : the estimated sources ŷ(n), n = 1, . . . , N
Initialization : y0(n) = B0x(n), B0 = Ip. Given
ε > 0 and µ > 0 suitably choosen
Do
• Update B and y :

Bk+1 = Bk − µ
d

dB
K̂Lm(cα̂, cY)

∣∣∣∣
B=Bk

yk+1(n) = Bk+1x(n), n = 1, . . . , N
• Until ‖Bk+1 −Bk‖ < ε
ŷ(n) = yk+1(n), n = 1, . . . , N

Algorithm 3: A copula based BSS algorithm for mix-
tures of dependent component sources.

of sample sources, uniform i.i.d with independent compo-
nents (Fig. 1.a and Fig. 2), i.i.d sources with independent
components drawn from the 4-ASK (Amplitude Shift Key-
ing) alphabet at which was added a centered Gaussian noise
with variance equal to 0.25 (Fig. 1.b), and i.i.d vector sources
with dependent components generated from Fairlie-Gumbel-
Morgenstern (FGM)-copula with α̂ = 0.8 (Fig. 3). The accu-
racy of source estimation is evaluated through the SNR, de-
fined by

SNRi := 10 log10

∑N
n=1 si(n)2∑N

n=1(ŷi(n)− si(n))2
, i = 1, 2.

In the standard case of independent component sources, our
algorithms (Algorithms 1 and 2) are compared with the MI
method described in [4], see Fig. 1 and Fig. 2. In Fig. 1.b
the used mixing matrix is A := [1 0.85; 0.65 1], and in all
the other cases A := [1 0.5; 0.5 1]. The number of samples
is N = 2000, and all simulations are repeated 50 times. The
gradient descent parameter is taken µ = 0.1 in all cases. We
observe from Fig. 1 and Fig. 2 that the proposed method gives
good results for the standard case of independent component
sources. Moreover, we see from Fig. 3 that our proposed
Algorithm 3 is able to separate, with good performance, mix-
tures of dependent source components.
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Fig. 1. Average output SNRs versus iteration number
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Fig. 2. The two steps copula based BSS for Uniform i.i.d with
independent source components
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Fig. 3. BSS for dependent source component signals
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