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ABSTRACT

In this paper, we investigate blind equalization techniques

based on information theoretic criteria. They involve estimat-

ing the probability density function (pdf) of transmitted data.

Our work is based on previous studies where the Parzen win-

dowmethod has been used to estimate the pdf at the equalizer

output. The equalizer is obtained by minimizing the distance

between this equalized pdf and some target distribution. With

a view to reduce algorithm complexity, we propose a reduced

constellation implementation of the adaptive equalizer. We

show complexity and performance gain against similar ap-

proaches in the literature.

Index Terms— Blind equalization, pdf, Parzen window-

ing

1. INTRODUCTION

Blind equalization has been an intensive research area for

several decades. It aims at developping effective and low

complexity algorithms that avoid bandwidth waste resulting

from training data. Several approaches have been proposed

to achieve this goal. They include the Sato algorithm [1] that

was the first blind technique and the Godard algorithms [2].

Among these methods, the Constant Modulus Algorithm

(CMA) is probably the most popular blind equalizer tech-

nique [3]. However, it requires a long data sequence to con-

verge and shows relatively high residual error. To overcome

these limitations, several approaches have been proposed like

the Modified Constant Modulus Algorithm (MCMA), that

performs blind equalization and carrier phase recovery si-

multaneously [4], the Multi-Modulus Algorithm (MMA) that

measures the errors of the real part and imaginary part of

the equalizer output separately [5] and the Normalized-CMA

(NCMA), that accelerates convergence by estimating the op-

timal step size of the algorithm at each iteration [6]. In the last

decade, new techniques for blind equalization, based on in-

formation theoretic criteria and pdf estimation of transmitted

data, have been proposed. These criteria are optimized adap-

tively, in general by means of stochastic gradient techniques.

Among pdf estimation techniques, kernel methods are very

popular and in particular the one that involves a Gaussian ker-

nel, also known as Parzen window [7]. In this paper, we are

interested in such a Stochastic blind equalization approach

that uses the Quadratic Distance (SQD) between the pdf at

the equalizer output and the known constellation pdf as a cost

function [8]. SQD outperformsCMA in terms of convergence

speed and residual Intersymbol Interference (ISI). However,

SQD has a computational burden which increases with the

order of the QAM modulation signal. Recently, an interest-

ing algorithm, named Low Complexity SQD (LCSQD), has

been introduced in [9]. It decreases the SQD complexity and

outperforms it. However, at low signal-to-noise ratio (SNR),

it may diverge in some cases. In this paper, we suggest to

modify the LCSQD to avoid this drawback. We also propose

a new method, also based on SQD, but that is more efficient

than LCSQD in terms of complexity, convergence speed and

residual ISI.

The rest of the paper is organized as follows. In section

2, we give an overview of the system model and we introduce

the SQD and LCSQD methods. In section 3, we first supply

an improved version of the LCSQD algorithm. Then, we de-

scribe the new algorithm that we propose and that we named

AR-LCSQD, with AR standing for Adaptive Radius. In sec-

tion 4, we illustrate the good behavior of the AR-LCSQD

through simulation examples. Conclusions of our work are

given in section 5.

2. SIGNAL AND EQUALIZER MODEL

2.1. Signal model

The baseband model of a transmission system with an adap-

tive blind channel equalizer is shown in Fig.1, where

s(n)n∈Z is the transmitted symbol at time n, that is assumed

to be drawn from a QAM constellation,h = [h0, h1, ..., hLh−1]
T

is the channel finite impulse response filter (FIR) with order

Lh, while (.)
T denotes the transpose operater, b(n)n∈Z is an

additive white Gaussian noise, x(n)n∈Z is the equalizer input,
w = [w0, w1, ..., wLw−1]

T is the equalizer impulse response,
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Transmitter Channel h +

b(n)

Equalizerw
s(n) x(n) y(n)

Fig. 1. Baseband model of a transmission system with an

adaptive blind channel equalizer.

with length Lw and y(n) is the equalized signal at time n.

x(n) and y(n) can be modeled as

x(n) =

Lh−1
∑

i=0

his(n− i) + b(n) (1)

y(n) =
Lw−1
∑

i=0

wix(n− i) = w
T
x(n) (2)

where x(n) = [x(n), x(n − 1), ..., x(n− Lw + 1)]T .

2.2. SQD and LCSQD algorithms

2.2.1. SQD

The SQD algorithm [8] aims at minimizing the quaratic dis-

tance between the pdf of the equalizer output and the pdf of

the noisy constellation. Its cost function is given by

J(w) =

∫ ∞

−∞

(pY P (z)− pSP (z))2dz (3)

where Y P = {|y(n)|P }, SP = {|sn|P }, |.| denotes the abso-
lute value and pZ(z) denotes the pdf of Z at z.

By using the Parzen window method with a window involv-

ing the L previous symbols, the estimates of the current pdfs

are

p̂Y P (z) =
1

L

L−1
∑

i=0

Kσ(z − |y(n− i)|P ) (4)

p̂SP (z) =
1

Ns

Ns−1
∑

i=0

Kσ(z − |si|P ) (5)

whereKσ is a Gaussian kernel with standard deviation σ

Kσ(x) =
1√
2π σ

e−
x
2

2σ2 (6)

and Ns is the number of complex symbols in the constella-

tion. According to [8], for P = 2 and a Parzen window with

length L = 1, the expression of the cost function is given by

J(w) =
1

N2
s

Ns
∑

i=1

Ns
∑

j=1

Kσ(|sj |2 − |si|2)

− 2

Ns

Ns
∑

i=1

Kσ(|y(n)|2 − |si|2). (7)

Then, the equalizer coefficient weights are adapted by

w(n+ 1) = w(n) − µ∇wJ(w) = w(n)− µ
′

ǫpx(n)
∗ (8)

where µ
′ ∝ µ is a fixed step-size and ǫp is given by

ǫp =

Ns−1
∑

i=0

y(n)(|y(n)|2 − |si|2)Kσ(|y(n)|2 − |si|2). (9)

2.2.2. LCSQD

In the LCSQD algorithm [9], instead of using the whole con-

stellation as in SQD algorithm, only neighboring values of the

symbol constellation pdfs are considered. These symbols are

selected as shown in Fig.2. More specificaly, neighborhoods

selection is performed as follows:

• If max(|yr(n)|, |yi(n)|) < Amax + R, where R > 0
is an experimental constant, Amax denotes the maxi-

mum constellation amplitude, yr(n) = ℜ{y(n)} and
yi(n) = ℑ{y(n)}, then the selected points are the set:

S = {sk : ‖y(n)− sk‖ < R} (10)

• If min(|yr(n)|, |yi(n)|) ≥ Amax + R, then four sym-

bols of the constellation are selected:

S =

{

sk,r = sign(yr(n))(Amax − ld)
sk,i = sign(yi(n))(Amax − ld)

}

l = 0, 1
k = 1, .., 4

(11)

where, d is the minimum constellation distance.

• If max(|yr(n)|, |yi(n)|) ≥ Amax +R :

– if |yr(n)| < Amax+R, then the selected constel-

lation points are :

S =

{

sk,r : ‖sign(yr(n))sk,r − [yr(n)]‖ < R

sk,i : sign(yi(n))(Amax + ld)

}

l=−1,0

(12)

– if |yi(n)| < Amax +R, then the selected constel-

lation points are :

S =

{

sk,r : sign(yr(n))(Amax + ld)
sk,i : |sign(yi(n))sk,i − [yi(n)]| < R

}

l=−1,0

(13)

where [.] is the integer operator.

3. IMPROVEMENT OF THE LCSQD AND

AR-LCSQD ALGORITHM

3.1. Improvement of the LCSQD algorithm

We have checked on simulations that when using large con-

stellations such as a 64-QAM or more at low SNR, typicaly

2
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Fig. 2. Local decision regions for a 64 QAM constellation:

the crosses represent values of y(n) while the filled circles

represent the corresponding constellation neighbors.

less than about 20 dB, we can notice a convergence problem

in the LCSQD algorithm. This results from a scenario in the

first test (max(|yr(n)|, |yi(n)|) < Amax +R) which is omit-

ted. We come across this scenario when we get an equalized

symbol that matches the first condition and is very close to

boundaries of the square limited by the lines at±(Amax+R).
In this case, there is no symbol in the considered constellation

that satisfies the inequality ‖y(n) − sk‖ < R. Indeed, when

y(n) lies in the shaded area in Fig.3, the distance between the
equalized symbol to the nearest symbol of the constellation

is then greater than R. The cases omitted by the LCSQD can

prevent the implementation of the algorithm from converging.

To solve this problem, a larger value of the radius can be used.

Fig. 3. Omitted areas in the LCSQD algorithm.

Then, we propose to add a subtest in the first test of the LC-

SQD algorithm:

If max(|yr(n)|, |yi(n)|) < Amax+R, then the selected con-

stellation points are :

S = {sk : ‖y(n)− sk‖ < R}. (14)

If S is empty, then the selected constellation points are :

S = {sk : ‖y(n)− sk‖ <
√
2R}. (15)

We can also use the value
√
2R for both cases. But, this may

decrease the performance of the algorithm in terms of resid-

ual ISI since when the equalized symbol lies within the con-

stellation, the number of selected symbols for the equalizer

updating is larger than necessary.

3.2. AR-LCSQD algorithm

Although it behaves pretty well, the main drawback of the

LCSQD algorithm is that the radius R is fixed throughout

the algorithm. Thus, at the beginning, when the equalizer is

far from convergence, the number of constellation symbols

selected to update the equalizer [9] is not enough to compute

the cost function. This can slow down the convergence speed

of the algorithm. Whereas, when the equalizer is very close

to convergence and the error at the equalizer output becomes

small, the number of constellation symbols in the updating

region is unnecessarily large for the cost function calculation.

This can prevent further reduction of the ISI.

To overcome this shortcoming, we propose a new approach

that we name Adaptive Radius-LCSQD (AR-LCSQD). It

consists in adaptively controlling the radius of the updating

region. This allows for a large radius in the blind stage, that

involves almost the whole constellation to reinforce conver-

gence speed, while only keeping the nearest symbol in the

constellation at convergence. Then, when convergence is

achieved, we obtain a low residual ISI because our algorithm

will be very similar to a decision-directed equalizer.

It can be mentioned here that with the AR-LCSQD algorithm

we select, whatever the position of the equalized symbol, the

points of the constellation that satisfy the following system:

S = {sk : ‖y(n)− sk‖ ≤ R(n)}. (16)

Evolution criterion for the radius of the judged region

To adapt the radius that determines the symbols of the con-

stellation that should be used for the equalizer updating, we

have employed a simple criterion based on the following dis-

persion function:

fd = | E{|y(n)|2} −R2 | (17)

where, R2 = E{|sn|
4}

E{|sn|2}
. It was shown in [10] that fd is equiv-

alent, up to a constant factor, to the CMA cost function given

by

JCMA = E{(|y(n)|2 −R2)
2}. (18)

fd characterizes the amount of intersymbol interference at the

equalizer output. Thus, it takes a great value during first itera-

tions and decreases until reaching a minimum at convergence.

3
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This makes it a meaningful tool to adapt the radius of the AR-

LCSQD algorithm. This choice is validated by simulation re-

sults in the next section. Since fd is time varying, it is adapted

iteratively using a forgetting factor λ :

f s
d(n) = λf s

d(n− 1) + (1− λ)fd (19)

where fs
d refers to the smoothed value of fd. At time n, we

define a linear relationship between the instantaneous value

of the radiusR(n) and f s
d(n) as follows :

R(n) = α f s
d(n) + β

= λR(n− 1) + (1− λ)(α fd(n) + β) (20)

where α and β are chosen empirically. We have tested the

selected values over multiple channels, like the channels of

Proakis and channels with an exponential decay profile and

we checked the independence of these parameters with re-

spect to the channel used. Then, R(n) is used to determine
the judged region according to Eq.(16).

4. SIMULATION RESULTS

In simulations, we use one typical digital radio channel that
was used in [9]:

H1(z) = (0.041 + i0.0109) + (0.0495 + i0.0123)z−1

+ (0.0672 + i0.017)z−2 + (0.0919 + i0.0235)z−3

+ (0.792 + i0.1281)z−4 + (0.396 + i0.0871)z−5

+ (0.2715 + i0.0498)z−6 + (0.2291 + i0.0414)z−7

+ (0.1287 + i0.0154)z−8 + (0.1032 + i0.0119)z−9

(21)

Besides, we employ an equalizer of length Lw = 31 initial-
ized with a tap-centered strategy. As a measure of perfor-

mance we use the ISI, defined by

ISI(n) =

∑

n |h ∗w(n)|2 −max|h ∗w(n)|2
max|h ∗w(n)|2 (22)

where h ∗ w is the combined channel-equalizer impulse re-

sponse. The kernel size, σ, of the function Kσ(x) was up-
dated according to [8]. To smooth the criterion function fd
for the radius adaptation, we use a forgetting factor such that

(1 − λ) is equal to 5 × 10−3 and 5 × 10−2 for 16-QAM and

64-QAM modulations. In 16-QAM case, the following pa-

rameters have been employed: µ of 3× 10−4, 1.7× 10−4 and

3 × 10−4 for SQD, LCSQD and AR-LCSQD respectively, α

of 0.5 and β of −1.5 for AR-LCSQD and R of 2
√
2 for LC-

SQD. In 64-QAM case, the following parameters have been

employed: µ of 8.5× 10−6, 2× 10−5 and 8× 10−6 for SQD,

LCSQD and AR-LCSQD respectively, α of 0.1 and β of −1
for AR-LCSQD andR of 2

√
2 for LCSQD. The performance

of the AR-LCSQD algorithm was compared with the SQD

and LCSQD algorithms for SNR = 30dB when using 16-

QAM and 64-QAM modulations. The learning curves of the

algorithms are presented in Fig.4. We can notice that the AR-

LCSQD algorithm which we propose outperforms the SQD

and LCSQD algorithms in terms of convergence speed and

residual ISI. We also compare the performance of the dif-

ferent algorithms, in Fig.5, when using a discrete-time fre-

quency selective channel H2 with an exponential decay pro-

file: h2(l) ∼ N (0, Ge−ρl) where l = 0, ..., Lh − 1 and G

is chosen such that
∑Lh−1

l=0
E[|h2(l)|2] = 1. For simulations,

we chose ρ = 0.7. Fig.5 also shows that AR-LCSQD outper-

forms the SQD and LCSQD algorithms.
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Fig. 4. Convergence curves of SQD, LCSQD and AR-

LCSQD algorithms usingH1 for SNR= 30dB.

The complexity of the algorithms is factor of the num-

ber of symbols that are selected to adapt the equalizer. With

the AR-LCSQD algorithm, this number decreases from one

iteration to another until keeping at convergence the nearest

symbol, in the constellation, to the equalized one. To mea-

sure the complexity of the algorithms, we average the total

number of symbols used in the convergence stage over the it-

erations. Table 1 shows the complexity gain provided by the

AR-LCSQD algorithm when using the channelH1.
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Fig. 5. Convergence curves for SQD, LCSQD and AR-

LCSQD algorithms usingH2 for SNR= 30dB.

Table 1. Computation burdens for SQD, LCSQD and AR-

LCSQD algorithms when usingH1. Ns = 16 for a 16-QAM
andNs = 64 for a 64-QAM.

× Exponent Complex ×
SQD 2(Ns + 1) Ns 2Ns + Lw

LCSQD 2(K + 1) K ≈ 6 2K + Lw

AR-LCSQD 2(M + 1) M ≈ 2 2M + Lw

5. CONCLUSION

In this paper, we have modified the LCSQD algorithm and

proposed a new approach for blind equalization based on pdf

fitting Method. It consists in adaptive constellation imple-

mentation from adaptive serch region. This adaptive control

allows AR-LCSQD to outperform the SQD and LCSQD algo-

rithms in terms of complexity, convergence speed and residual

ISI.
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