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ABSTRACT

Supervisory Control and Data Acquisition (SCADA) systems
allow remote monitoring and control of critical infrastruc-
tures such as electrical power grids, gas pipelines, nuclear
power plants, etc. Cyberattacks threatening these infrastruc-
tures may cause serious economic losses and may impact the
health and safety of the employees and the citizens living in
the area. The diversity of cyberattacks and the complexity of
the studied systems make modeling cyberattacks very diffi-
cult or even impossible. This paper outlines the importance
of one-class classification in detecting intrusions in SCADA
systems. Two approaches are investigated, the Support Vector
Data Description and the Kernel Principal Component Anal-
ysis. A case study on a gas pipeline testbed is provided with
real data containing many types of cyberattacks.

Index Terms— One-class classification, intrusion detec-
tion, kernel methods, novelty detection, SCADA systems

1. INTRODUCTION

The role of Supervisory Control and Data Acquisition
(SCADA) systems has increased in the past decades in many
fields especially in critical infrastructure sectors. SCADA
systems monitor and control physical processes such as elec-
trical power grids, oil and natural gas pipelines, chemical pro-
cessing plants, water distribution and wastewater collection
systems, nuclear power plants, traffic lights, etc. First genera-
tion SCADA networks operate in isolated environments, with
no connectivity to any system outside the network. Nowa-
days, the extensive use of Information and Communication
Technologies (Internet, wireless networks, cell phones) in
critical infrastructures has made SCADA networks more and
more interconnected with the outside world, and therefore
their vulnerability to cyberattacks has been increasing exces-
sively.

Several examples of intentional cyberattacks on SCADA
systems occurred in the past few years. In 2000, an ex-
employee of Maroochy Water Services in Australia took con-
trol of 150 sewage pumping stations and released one million
liters of untreated sewage into local parks and rivers [1]. In
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2003, the Slammer worm penetrated a private computer net-
work at Ohios Davis-Besse nuclear power plant and disabled
a safety monitoring system for nearly five hours [2]. In 2009,
cyberspies have penetrated the U.S. electrical grid and left
behind software programs that could be used to disrupt the
system [3]. For these reasons, researchers have been develop-
ing and deploying various Intrusion Detection Systems (IDS)
to reveal cyberattacks, restrict their impact on the infrastruc-
tures, provide more security to the employees and citizens,
and limit the economic and human life losses.

Traditional IDS monitor the network transactions focus-
ing on matching signatures of known cyberattacks stored in
the database of network packets [4]. However, these IDS can-
not detect new types of cyberattacks, i.e., attacks with signa-
tures not stored in the database. Recently, Carcano et al. pre-
sented in [5] an approach based on the concept of critical state
analysis for the detection of a particular type of cyberattacks
against a given industrial installation. They used the concept
of “critical state proximity” based on the notion of distance
from critical states to predict whether the system is heading
to a dangerous state. This approach focuses on the restrictive
assumption that the attacker interferes with the state of the
installation forcing a transition from a safe state to a critical
one. In [6] [7], Morris et al. describe SCADA testbed elabo-
rated in the Mississippi State University Laboratory to inves-
tigate cybersecurity vulnerabilities on functional control sys-
tems. This testbed includes commercial hardware and soft-
ware that control physical processes such as a gas pipeline,
an industrial blower, a smart grid transmission control sys-
tem, a raised water tower and a factory conveyor belt. In or-
der to study cybersecurity vulnerabilities in SCADA systems
and to understand their implications and criticality on con-
trolled physical processes, three classes of cyberattacks were
integrated in the testbed: a) command injection attack where
false control information is injected in the network traffic; b)
response injection attack where false measurements are sent
to the control system; and c) denial of service (DOS) attack
disrupting the communication. The diversity of these types of
cyberattacks restricts the use of parametric model-based ap-
proach to detect them.

Machine learning and classification techniques have been
the center of attention of researchers in the past few years.
They provide an elegant way to learn a nonlinear system with-



out the need of an exact physical model. When it comes to
novel or outlier detection in industrial systems, the majority
of the data designates the normal functional mode, and it is
nearly impossible to acquire data related to the malfunction-
ing or critical states [8, 9, 10]. Therefore, one-class classifi-
cation is the appropriate solution in detecting machine faults
and intrusions. To the best of our knowledge, machine learn-
ing has not been investigated for SCADA systems.

This paper describes two distinct one-class classification
approaches implemented on the Gas Pipeline testbed from
the Mississippi State University SCADA Security Laboratory
[7]. The first method is the Support Vector Data Descrip-
tion (SVDD) introduced by Tax et al. in [11], and the sec-
ond one is based on the Kernel Principal Component Analy-
sis (KPCA) [12]. In each approach, the description boundary
of the normal behavior of the system is found. Furthermore,
the one-class classifier discriminates the data between normal
or abnormal, and accordingly outliers are detected. We study
in this paper six types of cyberattacks. The remainder of this
paper is organized as follows. Section 2 briefly outlines the
kernel methods for one-class classification, namely the SVDD
and the KPCA. Section 3 describes the gas pipeline testbed,
the choice of parameters and the results. Section 4 provides
conclusion and future works.

2. ONE-CLASS CLASSIFICATION

In the past decade, kernel methods have become widely used
in machine learning and classification fields for their strong
mathematical framework [13]. Kernel methods use positive
definite kernel functions K (z;, ;) to map the data into a re-
producing kernel Hilbert space (RKHS) H through a mapping
function ¢: x; — ¢(x;), with

K(zi,z;) = (¢(@i), d(;))-

Let || - || be the corresponding distance in . The advantage
of using such a kernel is that it allows to construct classifi-
cation algorithms in inner product spaces without computing
the coordinates of the data in that space, and therefore with-
out any explicit knowledge of the mapping function ¢. This
key idea is known as the kernel trick, for it can be used to
transform linear algorithms expressed only in terms of inner
products into nonlinear ones. One-class classification algo-
rithms are applied on training data in the feature space, and a
decision function tests new samples to classify them as nor-
mal data or outliers.

2.1. Support Vector Data Description

Support Vector Data Description (SVDD) defines a hyper-
sphere with minimum radius that encloses most of the training
data [11] [14]. Samples that lay outside the hypersphere are
considered outliers.

Given a training dataset «; , ¢ € {1,...,N} in a p-
dimensional space, the SVDD estimates the hypersphere with
minimum radius that encompasses all data in the feature space
‘H. The center of the hypersphere is denoted by a and its
radius by R > 0. To allow the presence of outliers in the
training set, the slack variables &; > 0 is introduced for each
training sample to penalize the excluded samples. This boils
down to the following constrained minimization problem:

min RMLZ@- (1)

subject to
¢(z;) —all}, <R*+¢& and & >0Vi=1,..,N (2)

The tunable parameter v regulates the trade-off between the
volume of the sphere and the number of outliers, where v €
(0, 1) represents an upper bound on the fraction of outliers.

Considering the Lagrangian of the above constrained op-
timization problem, its partial derivatives with respectto R, a
and &; give the following relations:
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where the o;’s are the Lagrangian multipliers. Incorporating
these relations into the Lagrangian gives us the following ob-
jective functional to be maximized with respect to «;:

N
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subjectto 0 < «a; < 1/vN. The radius of the hypersphere
is estimated from any sample xj, on the boundary:
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where the right-hand-side is ||¢(x) — al|3,.

In order to evaluate a new sample z, we calculate the dis-
tance between the center of the sphere a and ¢(z) in the fea-
ture space. If this distance is smaller than the radius, namely
l¢(z)—al|3, < R?, z is accepted as a normal sample. Other-
wise, z is considered as an outlier and an intrusion is detected.

2.2. Kernel Principal Component Analysis

Hoffman describes in [15] a new approach for novelty detec-
tion based on Kernel Principal Component Analysis (KPCA)
introduced by Scholkopf ez al. [12]. In this approach, the re-
construction error defines a measure of novelty, and it takes
into account the heterogeneous variance of the distribution
of the data. The first step is to find eigenvalues A\ > 0



and eigenvectors v of the covariance matrix C in H sat-
isfying A\v = Cv. It is easy to see that each eigenvec-
tor v takes the form v = Zivzl a;p(x;), where ¢(a;) is
the centered version of ¢(x;) in the feature space, ¢(x;) =
o(x;) — %ZLI ¢(x;). The a;’s are given by solving the
eigen decomposition Na = Ko, where the kernel matrix
corresponding to ¢(z;) becomes:

- 1 Y
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N
r=1
1 N N
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The reconstruction error measures the squared distance
between the centered sample a(z) and its projection in the
subspace spanned by the most relevant eigenvectors. Let P
be the projection operator onto the subspace spanned by the g
eigenvectors v(1), v(®) ... (@ The reconstruction error is
computed as follows:

16(2) = Po(2)[3 = (d(2), 6(2)) — 2(6(2), Po(=))

+ (Po(2), Po(2))

Since the projection P is idempotent (i.e., P? = P) and self-

adjoint (i.e., (P(2), 6(2")) = ((2), PH(2'))). then
I6(2) = Po(2) |13 = K(z,2) — (Pd(2), Pd(2)).

oreover, b(z) = - {(z , U # By the eigen-
M P =1 © ||5§ - PY g
vectors are orthonormal, we obtain:

(P3(z). Pa(2)) = 3 (3(=),v)?,

=1

where (¢(z),v?) = Zivzl agl)f((z, x;). The reconstruc-
tion error defines a novelty measure.

Fig. 1. Gas pipeline testbed

3. GAS PIPELINE TESTBED AND SIMULATIONS

In this paper, one-class classification algorithms are applied
on the Gas pipeline testbed of the Mississippi State University
SCADA Laboratory as illustrated in figure 1. The gas pipeline
is used to move natural gas or any other petroleum products.
This testbed represents a typical SCADA system with a Mas-
ter Terminal Unit (MTU), Remote Terminal Units (RTU) and
a Human Machine Interface (HMI). The gas pipeline con-
trol system embraces an air pump that pumps air into the
pipeline, a pressure sensor which allows pressure visibility
at the pipeline and remotely on the HMI, a release valve
and a solenoid release valve to loose air pressure from the
pipeline. The control scheme includes an automatic and a
manual mode. In the automatic mode, a PID is used to con-
trol the pressure in the pipeline, while in the manual mode the
operator can supervise the system and take charge over the
pump state and the two release valves.

To study the vulnerabilities of the system and their impli-
cations on the controlled process, several types of false com-
mands and responses are injected into the system to make its
behavior abnormal. For instance, the “negative pressure value
injection” returns a negative response of the pressure from the
RTU while the pressure can not be negative in the system,
the “fast change response injection” sends measurements that
change very fast opposed to the case of a normal behavior, the
“burst response injection” sends only one value equals to the
maximum pressure limit, the “wave pressure injection” and
the “single packet injection”. The training phase was made
on a normal training dataset while the tests were conducted
on data containing these types of cyberattacks. Table 1 and
figure 6 illustrate the studied types of cyberattacks.

Let x(t) be the pressure (in pound per square inch) in
the pipeline at instant £. The time series is folded into 2-
dimensional input vectors composed of the pressure at instant
t and the difference in the pressure between instants ¢ and
t — 1, namely ¢ = [z(t) «(t) — x(t — 1)]. The choice of
the input vectors was made to draw attention to the fact that
the pressure measurements of two consecutive instants in the
normal behavior of the system should be close to each other.
Furthermore, the presence of gaps in the pressure between
two consecutive instants may be a strong sign of a cyberat-
tack.

The kernel used is the Gaussian kernel, since it is the most
suitable kernel for one-class classification problems [16][17]:

K(x;,x;) =exp<_ M) @

g2

where || - || is the Euclidean distance and the free parame-
ter s is the bandwidth of the kernel. This parameter should
be chosen wisely to have the best description of the data and
avoid overfitting. The second free parameter to optimize in
the case of the SVDD is v which is the trade-off between the



volume of the hypersphere and the number of outliers. We
applied a 5-fold cross validation to optimize these two pa-
rameters where s varies from 0.1 to 1 and v from 0.1 to 0.5,
with a step equals to 0.1 for each parameter. In the KPCA ap-
proach, we have the same parameter s, while the second free
parameter is the number of eigenvectors ¢ in the feature space.
The value of g should be sufficiently large in order to have a
description fitting more tightly our data and to avoid a loose
decision boundary. Preliminary experiments were conducted,
and we have set the value of ¢ to ¢ = 40.

The results of the SVDD in the presence of several types
of cyberattacks are shown in figures 2-4. In these figures,
the decision boundary encloses all the normal data while out-
liers are rejected outside this description. In order to com-
pare KPCA with SVDD, we fixed the number of outliers from
SVDD and we tested the KPCA algorithm on the gas pipeline
data. The results in figure 5 show that for the same number of
outliers, SVDD gives better performance with a description
that fits more tightly the data at the expense of the compu-
tational complexity. In fact, a quadratic problem has to be
resolve in the SVDD approach in order to optimize the La-
grangian in equation (3). Table 2 outlines the error probability
of two types of cyberattacks appearing in figure 6.

Table 1. The meaning of each data in figures 3 and 4.

datal outliers from “fast response injection”
data2 normal data in the training set

data3 outliers in the training set

data4 decision boundary

data5 normal data from “fast response injection”
data6 normal data from “burst response injection”
data7 outliers from “burst response injection”
data8 normal data from “denial of service”

data9 normal data from “single response injection”
datalO || outliers from “single response injection”
datall || normal data from “wave response injection”
datal2 || outliers from “wave response injection”
datal3 || normal data from “slow response injection”
datal4 || outliers from “slow response injection”

Table 2. The confusion matrix of slow and burst response
injection attacks.

SVDD KPCA
Normal | Outlier | Normal | Outlier
Slow Normal | 98.54 1.46 96.21 3.79
injection | Outlier 0 100 0 100
Burst Normal | 98.64 1.36 95.27 4.63
injection | Outlier | 14.29 85.71 9.65 90.35

() - x(t-1)

Fig. 2. SVDD applied on the gas pipeline data with s = 0.5
and v = 0.2. The description boundary is given by the lines,
with outliers corresponding to the transitional states.

X - x(t-1)

Fig. 3. Decision boundary of SVDD in the presence of several
cyberattack scenarios. The data are explained in Table 1.

4. CONCLUSION

In this paper, we studied two distinct one-class classification
algorithms on real data from the SCADA gas pipeline tested.
Results showed that, with a proper tuning of the free param-
eters, these methods gave a very tight description enclosing
all the data describing the normal behavior of the system, and
also they detected outliers and intrusions.

For future works, many enhancements can be made to im-
prove the performance of the algorithms studied in this paper.
We are working currently on the optimization of the free pa-
rameters to avoid the time-consuming cross-validation step.
Moreover, we are studying the use of more adapted kernels
that describes in a better way the behavior of a SCADA sys-
tem. Finally, these outlier detection techniques should be in-
tegrated in the SCADA intrusion detection systems.

5. ACKNOWLEDGMENT

The authors would like to thank Thomas Morris and the
SCADA Laboratory for providing the SCADA dataset.



X - x(t-1)

I I I I I I I L I
17 75 18 85

19 105 20
Pressure x(t) measured in PS (pound per square inch)

Fig.4. Zoom-in of figure 3 between z(¢) = 17 and x(¢t) = 22.
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Fig.5. KPCA with s = 0.3 and ¢ = 40. The decision bound-
ary captures the normal behavior of the system.
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