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LATE INTEGRATION OF FEATURES FOR ACOUSTIC EMOTION RECOGNITION
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ABSTRACT

It is widely accepted that the ability to understand emo-
tion or affect from speech is central to the design of more
natural human-computer interfaces. This paper explores the
classification of natural emotional speech along four affective
dimensions, using hidden Markov models (HMMs). A num-
ber of features are tested, some of which have never before
been applied to emotion recognition. Finally, these differ-
ent features are combined discriminatively to achieve a com-
petitive performance on the AVEC 2011 affect classification
task [1].

Index Terms— Hidden Markov Model, Emotion recog-
nition, Affect

1. INTRODUCTION

The desire to enable machines to understand the paralinguistic
content of speech is driving a considerable research effort in
the area of affective (i.e. emotional) computing [2, 3]. Early
work in emotion recognition focused on the so-called basic
emotion states: joy; sadness; anger; fear; disgust; surprise.
However, this approach is limited in its ability to describe
realistic human expression. An alternative is to rate speech on
a number of affective dimensions, typically between two and
four [3], each of which represents some emotion related qual-
ity. The four considered here are activation, valence, power,
and expectation. Activation measures how passive or active
the speaker is; valence measures the positivity or negativity
of the speaker; power measures how in control the speaker
appears to feel; and expectation measures the anticipation or
surprise of the speaker.

A variety of features have been proposed for emotion
recognition. These can be roughly grouped into four cate-
gories: prosodic; spectral; voice quality; and Teager Energy
Operator (TEO) based. We consider a representative set
from each of these categories. For comparison with previous
work, we include a set of standard Mel-frequency cepstral
coefficients (MFCCs), and a subset of the features from the
recent Audio-Visual Emotion Challenge (AVEC 2011) [1],
conducted at the 2011 International Conference on Affective
Computing and Intelligent Interaction, which incorporates

This work is funded by the Irish Research Council under the Embark
postgraduate scholarship scheme. Many thanks to John Kane for the voice
quality features.

temporal, spectral, and pitch information. We also consider a
set of TEO features and a set of voice quality features. All of
these features are traditionally extracted over short (25-30ms)
frame lengths. Since emotion varies more slowly than speech,
we will also consider two sets of long-term spectro-temporal
features [4, 5].

We use hidden Markov models (HMMs) to independently
classify speech from the SEMAINE database, a corpus of nat-
ural emotional speech, along the four dimensions previously
stated. One motivation for this is the established strength of
the HMM framework within speech recognition, which emo-
tion recognition seeks to supplement. Another is the poten-
tial of HMMs to capture the temporal evolution of emotion in
speech at the highest level. For each dimension we implement
five independent HMM classifiers, each using a different fea-
ture set. We then combine the outputs of the classifiers, using
discriminative training to optimise the classifier weights. We
compare our HMM approach with results obtained from a
SVM classifier [1] and a multi-stage kNN/HMM system [6],
both of which were tested on the same database.

This paper offers a number of novel contributions. Of the
feature sets used, one [4] has never been applied to emotion
recognition before, while another [5] has had only limited
use. Some of the voice quality features we include have never
before been used for emotion recognition. Finally, while
some authors have attempted to combine audio and visual
information, to the best of our knowledge there have been
few attempts to fuse multiple acoustic classifiers. The closest
study would be [7], which investigates early integration of
acoustic features for emotion recognition, however the focus
is on discrete emotions, and the authors do not explore late
integration methods.

The rest of this paper is organised as follows. The emo-
tional speech database will be discussed in Section 2. Sec-
tion 3 will outline the feature extraction process and classifier
structure. Results and discussion will be presented in Section
4. Finally, some conclusions will be given in Section 5.

2. DATABASE
The database used is the audio portion of the SEMAINE
database of emotionally coloured character interactions [8].
The database consists of conversations held between an oper-
ator and a user. The operator adopts the role of one of four
characters, and by acting emotionally attempts to induce nat-
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Table 1. Full list of features used. ∗extracted using Aparat [9]
†extracted using openSMILE [10]

Voice
Quality

OQ1, OQ2, OQa, QOQ, AQ, NAQ,
ClQ, SQ1, SQ2, H1-H2, HRF

[9]∗

Peak Slope (Wavelet, Glottal) [11]
RPP, H2-H1 [12]
MDQ [13]

Prosodic Intensity, Zero Crossing Rate,
Energy in bands 250 - 650 Hz, 1 - 4
kHz, 25%, 50%, 75%, 90% spectral
roll-off, Flux, Entropy, Variance,
Skewness, Kurtosis

[1]†

F0, Probability of voicing, jitter,
delta jitter, shimmer, log(HNR)

MFCC MFCC 1-12
TEO TEO-FM-Var, TEO-Auto-Env,

TEO-CB-Auto-Env
[14]

ural emotional responses in the user. This has resulted in a
rich database of over 12 hours of natural emotional speech.

The SEMAINE database was recently used as the chal-
lenge data for AVEC 2011 challenge [1]. The task for this
challenge was to classify words along four affective dimen-
sions, using either audio or video information, or both. Only a
binary classification (High/Low) was performed, and at word
level. Since we are concerned only with audio in this study,
we will use the audio sub-challenge as a reference with which
to compare our results.

3. EXPERIMENTAL SETUP
A full list of the short term features used in this study and rel-
evant references is given in Table 1. Unless otherwise stated
features are extracted over 25ms frames (hamming win-
dowed), spaced 10ms apart. The MFCC, TEO, and AVEC
features have been discussed extensively in previous litera-
ture [1, 3, 14], thus we will focus the following discussion on
the voice quality and long term modulation spectrum (LTMS)
features. The dimensionality of all feature sets, except for the
MFCCs, is reduced via principal component analysis (PCA),
and first derivatives of all features are computed over a three
frame window.

3.1. Voice Quality Features
The majority of existing voice quality features are parametri-
sations of the glottal waveform. Thus we first record 11 time
and frequency measurements from the glottal waveform as
in [15]. It is known that certain irregular phonation types
(strong determinants of voice quality) cause difficulties for
glottal source estimation [16]. Therefore, we include a num-
ber of new voice quality features which do not rely on glot-
tal source estimation, and have not previously been used for
emotion recognition. The residual peak prominence and dif-
ference in 1st and 2nd harmonics (H2-H1) are calculated from
the linear prediction (LP) residual and have been designed
to classify a particular type of irregular phonation, namely

creak [12]. The peak slope and maximum dispersion quotient
(MDQ) are estimated from a wavelet decomposition [11, 13]
and are designed to capture breathy or tense voice.

3.2. Long Term Features

Long term modulation spectrum (LTMS) features are also
extracted. Two different approaches are explored [4, 5]. Both
involve critical band filtering the speech signal, but differ in
their subsequent modelling of human auditory perception.
The first set (which we will refer to as the LTMS(A) set [4])
includes an adaptive compression loop which accentuates
sudden changes in the sub-band envelope and suppresses
slow changes. These features are extracted over frames of
600-900 ms. The second set (LTMS(B) [5]),which has pre-
viously been used for emotion recognition, incorporates a
number of measures of the energy distribution of a spectro-
temporal representation of each sub-band, extracted over 250
ms frames.

In order to understand the importance of the frame-length,
both LTMS feature sets were extracted over frame lengths
between 250 ms and 900 ms, with a 10 ms delay between
frames.

3.3. HMM Classifier

We use a left/right HMM classifier, in which HMMs were
trained using frame level features. As mentioned above, the
optimum model for emotion recognition is still an open ques-
tion. Furthermore, it is possible that the different dimensions
may be best modelled by different HMMs. We tested a range
of HMM models, containing between one and five states, and
with up to fifteen Gaussian mixtures per state. The HMMs
were implemented using the Hidden Markov Model Toolkit
(HTK), and were trained using word level labels. For each
dimension, two HMMs were trained, corresponding to the
High and Low binary labels.

A noted drawback of the HMM is its inability to model
supra-segmental information [3]. The HMM classifier models
the evolution of emotion within words, but does not account
for long term dependencies between words. Emotion varies
slowly, so rapid switching between high and low affective
states is unlikely. Thus a post processing stage is included
in which a median filter is applied over a seven word window
to de-noise the output labels.

3.4. Decision Fusion

In our final experiment we attempt to exploit the strengths
of each individual classifier by combining the results of each
individual system. For each classifier, k, and test word xn,
we can define Lnjk as the log likelihood that the word xn
belongs to the classCj . The overall log likelihood of the class
Cj given the results obtained from the five classifiers for the
nth word is approximated as follows

2
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Fig. 1. Classification performance of Long Term Modulation Spectrum (LTMS) features extracted over a range of frame lengths
on four dimensions: A(ctivation), E(xpectation), P(ower), V(alence), and mean performance (M) over all four.

Lnj =

K∑
k=1

wkLnjk (1)

where {wk} are the classifier weights, and K = 5 is the
number of independent classifiers to be combined.

The decision rule is thus

C(xn) = Ci if Lni = max
j
Lnj (2)

We explore three approaches to choosing the classifier
weights, {wk}: assigning equal weights; via Minimum clas-
sification Error (MCE) training; and via Maximum Mutual
Information (MMI) training [17].

4. RESULTS
We compare our results with two references. The first is the
baseline given by the organisers of the AVEC 2011 audio sub-
challenge, which was obtained using a SVM classifier [1].
The second is performance of a hybrid kNN/HMM system
proposed by Meng et al. [6], which won the AVEC 2011 audio
sub-challenge. All HMMs are trained on the AVEC train-
ing set, and unless otherwise stated are tested on the AVEC
test set. The performance measure is the weighted word-level
accuracy (WA) as used in the AVEC 2011 challenge [1].

4.1. Dynamic Modelling of Emotion
We explore the incorporation of temporal information in two
ways: by varying the LTMS feature length, and the number of
states and mixtures in the HMM model. The HMM classifier
models short term (within word) evolution of emotion, but
does not capture long term trends. The smallest frame length
considered for the LTMS features (250 ms) is close to the
average word length (263 ms), thus the LTMS features may
capture higher level patterns in emotion.

Figure 1 shows the change in performance of the two
LTMS feature sets on the AVEC development partition as the
frame length is varied. Overall the performance on activation
and power is roughly comparable for both LTMS sets. Expec-
tation is better captured by the LTMS(A) set while valence
favours the LTMS(B) set. For both LTMS classifiers valence
is the least affected by the frame length. The best performance
on activation is achieved between 600 and 700 ms for both

features. The classification of expectation using the LTMS(A)
set is generally better for shorter frame lengths (less than 600
ms) while using the LTMS(B) set the performance varies little
with frame length. The best performance for the classification
of power with the LTMS(B) set is achieved with frame lengths
between 400 ms and 600 ms, while using the LTMS(A) set
longer frame lengths are preferable.

By calculating features over longer frames, we introduce a
degree of memory which begins to compensate for the afore-
mentioned inability of the HMM to model supra-segmental
information. Given that the performance on activation and
power is maximised at around 600 ms, while expectation and
valence appear to be unaffected by the changing frame length,
or to favour shorter frames, we conclude that this long term
memory is particularly useful for activation and power.
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Fig. 2. Performance of HMM classifiers with varying num-
bers of HMM states and mixtures, using the AVEC-r feature
set, compared with the AVEC baselines and the performance
of the Meng classifier system.

Figure 2 compares the performance of a range of HMM
topologies, using the AVEC-r features set, on the AVEC test
partition. For activation, once the number of mixtures is
increased to 10 there is no advantage achieved by increasing
the number of states. Similarly for power, the performance
of the single state HMM with 6 or 7 mixtures is close to the
performance of the three and five state HMMs with just one
mixture. The best performance on expectation is achieved
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Fig. 3. Comparison of feature sets for HMM affective classi-
fication. The LTMS set used here is LTMS(B) with a frame
length of 600 ms

with the single state HMM and the performance consistently
falls as the number of states increases. This suggests that
for activation, expectation, and power, provided we have suf-
ficient mixtures to model the diversity of the data, there is
no further benefit to be obtained by modelling the temporal
evolution at a state level. The only dimension which clearly
benefits from the dynamic modelling ability of the HMM is
valence. There is a small but consistent advantage to using a
3 state model with 6 to 10 mixtures on this dimension.

The sharp decrease in performance of the single state
HMM on power when the number of mixtures is increased
from 7 to 8, and the steady decline in performance of the
3 and 5 state models, also suggests that there is insufficient
variation in our data to train more complex models. The
high and low labels for both power and valence are unevenly
distributed in the training partition. The relative scarcity of
examples of Low may explain why neither dimension appears
to benefit from a large number of Gaussian mixtures.

4.2. Comparison of Feature Sets
Figure 3 compares the performance of the five feature sets
with the challenge baseline and the performance of the Meng
et al. [6] classifier. The best overall performance is 54%,
given by the voice quality features, which just surpasses the
53.3% of Meng et al.. This is largely due to the significant
improvement achieved on the power dimension. The voice
quality features also outperform Meng et al. on valence. None
of the feature sets tested improve upon the classification of
activation achieved by Meng et al. However, MFCC feature
set performs quite well on expectation.

4.3. Performance of ensembles
An important consideration when combining classifiers is the
diversity of the classifier set. In general, the more diverse the
classifier set, the better the results of the combined classifier.
Therefore, before reporting the performance of the ensemble,
we briefly investigate the diversity.

Figure 4 shows the frequency with which at least n of
the classifiers correctly classify a word from the development
set. The n = 3 column corresponds to the performance of
a majority vote, and varies between 40% and 60% depend-
ing on the dimension in question. We also measured diversity
using three measures described in [18]. These are reported in
Table 2. A diverse classifier set should have Entropy and KW
variance close to 1 and inter-agreement κ close to zero. The

Table 2. Entropy (E), Kohavi-Wolpert variance (KW), and
inter-agreement (κ), measures for the four classifier ensem-
bles

E KW κ

A 0.523 0.140 0.293
E 0.734 0.190 0.049
P 0.696 0.182 0.086
V 0.710 0.184 0.077
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Fig. 4. Frequency that at least n classifiers correctly classify
words from the development set

entropy and inter-agreement scores from Table 2 suggest that
the classifier set is quite diverse. Therefore we would expect a
reasonable improvement in accuracy from the combined clas-
sifier. The small KW variances may be due to the fact that
we consider a two class problem, so we cannot realistically
expect a large variance.

Table 3 outlines the result of fusing the individual classi-
fier outputs via a weighted sum of log likelihoods using equal
classifier weights (Average), using MCE trained weights, and
using MMI trained weights. The performance of the over-
all best individual feature set, the voice quality (VQ) set, and
the performance reported by Meng et al. [6], are also given
for comparison. Overall, the average log likelihood performs
best. This is counter intuitive. We would expect the MCE or
MMI trained weights to boost classifiers which perform well
and suppress classifiers which perform poorly, thus improving
the overall results even further than the equi-weighted sum.
However, the discriminative training cannot take into account
how well a given classifier will generalise to unseen data. The
test set is speaker independent, and emotion and affect are
person specific, particularly in natural speech. For example,
the best classification on valence in the test partition is given
by the voice quality features. These same features perform
worst on valence in the training set.

Overall, the combination of multiple classifiers increases
performance by 1.9% over that of the voice quality set, and by
2.6% over that acheived by Meng et al. [6]. Given the diver-
sity results in Table 2 and the information of Figure 4, better
performance is possible. Clearly we need a more sophisti-
cated method of learning when to trust each classifier.

It is worth noting that the results in Table 3 are not directly
comparable to Figure 2 since the HMM topology is not fully
optimised for this experiment. However, we would expect
the improvements from classifier combination to generalise
to other HMM structures.
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Table 3. Summary of performances achieved per dimension
by ensemble classifiers.

Meng VQ Average MCE MMI
A 64.3 58.2 59.5 59.4 59.6
E 57.0 55.1 56.4 56.4 56.2
P 41.3 52.1 51.5 48.9 52.2
V 50.5 50.8 56.4 43.8 44.5

Mean 53.3 54.0 55.9 52.1 53.1

5. CONCLUSION
From the above analysis is it clear that some degree of tempo-
ral modelling is required for affective classification. Valence
which is traditionally considered captured modelled by acous-
tic features benefits the most from the use of HMMs over
GMMs. This suggests that the short-term evolution of acous-
tic features is important for the identification of this dimen-
sion, while long-term trends, introduced by the LTMS fea-
tures are more useful for activation and expectation. This
concept of including multi-level temporal information war-
rants further investigation.

Of the five feature sets explored, the voice quality features
performed the best on average. This is most likely because
the irregular phonation types which humans use to express
emotion often cause difficulties for automated feature anal-
ysis. The voice quality set contains features are specifically
designed not only to be robust to these irregular phonation
types, but also to identify them.

Regarding the reproducibility of these results, a study by
Ntalampiras et al. [7] shows a benefit to both temporal mod-
elling and feature fusion for the recognition of discrete emo-
tions. However when we carried out experiments on the FAU-
AEC database [19] no similar trends were found in feature
performances or HMM structure. This may be because acous-
tic emotion expression is age, language, or culture dependent
(SEMAINE consists of English-speaking adults while FAU-
AEC contains German-speaking children).

Given the high classifier diversity, the performance of
the ensemble classifier is disappointing. Work is ongoing to
explore more involved fusion techniques. Given the complex-
ity of emotions in speech, it is reasonable to expect that more
complex or involved approaches to classifier combination are
required. 6. REFERENCES

[1] B. Schuller, M. Valstar, F. Eyben, G. McKeown,
R. Cowie, and M. Pantic, AVEC 2011The First Inter-
national Audio/Visual Emotion Challenge, vol. 6975 of
LNCS, pp. 415–424, Springer, 2011.

[2] R. Picard, Affective Computing, MIT Press, Cambridge,
Massachussets, 1997.

[3] B. Schuller, A. Batliner, S. Steidl, and D. Seppi,
“Recognising realistic emotions and affect in speech:
State of the art and lessons learnt from the first chal-
lenge,” Sp. Comm., vol. 53, no. 910, pp. 1062–1087,
2011.

[4] S. Ganapathy, S. Thomas, and H. Hermansky, “Static

and dynamic modulation spectrum for speech recogni-
tion,” in Interspeech, 2009, pp. 2823–2826.

[5] S. Wu, T. H. Falk, and W.-Y. Chan, “Automatic
speech emotion recognition using modulation spectral
features,” Sp. Comm., vol. 53, no. 5, pp. 768–785, 2011.

[6] H. Meng and N. Bianchi-Berthouze, Naturalistic
Affective Expression Classification by a Multi-stage
Approach Based on Hidden Markov Models, vol. 6975
of LNCS, pp. 378–387, Springer, 2011.

[7] S. Ntalampiras and N. Fakotakis, “Modeling the tempo-
ral evolution of acoustic parameters for speech emotion
recognition,” IEEE Trans. Affective Computing, vol. 3,
no. 1, pp. 116–125, 2012.

[8] G. McKeown, M. Valstar, R. Cowie, M. Pantic, and
M. Schroder, “The semaine database: Annotated mul-
timodal records of emotionally colored conversations
between a person and a limited agent,” IEEE Trans.
Affective Computing, vol. 3, no. 1, pp. 5–17, 2012.

[9] M. Airas, “Tkk aparat: An environment for voice
inverse filtering and parameterization,” Logopedics
Phoniatrics Vocology, vol. 33, no. 1, pp. 49–64, 2008.

[10] F. Eyben, M. Wollmer, and B. Schuller, “Opensmile:
the munich versatile and fast open-source audio feature
extractor,” in ACM Multimedia, 2010, pp. 1459–1462.

[11] J. Kane and C. Gobl, “Identifying regions of non-modal
phonation using features of the wavelet transform,” in
Interspeech, 2011, pp. 177–180.

[12] J. Kane, T. Drugman, and C. Gobl, “Improved automatic
detection of creak,” Computer Speech & Language, vol.
27, no. 4, 2013.

[13] J. Kane and C. Gobl, “Wavelet maxima dispersion for
breathy to tense voice discrimination,” IEEE Trans.
Audio, Speech, and Language Proc., vol. 21, no. 6, pp.
1170–1179, 2013.

[14] G. Zhou, J. H. L. Hansen, and J. F. Kaiser, “Nonlin-
ear feature based classification of speech under stress,”
IEEE Trans. Speech and Audio Proc., vol. 9, no. 3, pp.
201–216, 2001.

[15] R. Sun and E. Moore, Investigating Glottal Parameters
and Teager Energy Operators in Emotion Recognition,
vol. 6975 of LNCS, pp. 425–434, Springer, 2011.

[16] J. P. Cabral, J. Kane, C. Gobl, and J. Carson-Berndsen,
“Evaluation of glottal epoch detection algorithms on dif-
ferent voice types,” in Interspeech, 2011.

[17] V. Valtchev, Discriminative Methods in HMM-based
Speech Recognition, Ph.D. thesis, 1995.

[18] L. I. Kuncheva and C. J. Whitaker, “Measures of diver-
sity in classifier ensembles and their relationship with
the ensemble accuracy,” Machine Learning, vol. 51, no.
2, pp. 181–207, 2003.

[19] Stefan Steidl, Automatic Classification of Emotion-
Related User States in Spontaneous Children’s Speech,
Logos Verlag, 2009.

5


