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ABSTRACT

Speech signals recorded in a room are commonly degraded by re-
verberation. In most cases, both the speech signal and the acoustic
system of the room are unknown. In this paper, a multi-microphone
algorithm that simultaneously estimates the acoustic system and
the clean signal is proposed. An expectation-maximization (EM)
scheme is employed to iteratively obtain the maximum likelihood
(ML) estimates of the acoustic parameters. In the expectation step,
the Kalman smoother is applied to extract the clean signal from the
data utilizing the estimated parameters. In the maximization step,
the parameters are updated according to the output of the Kalman
smoother. Experimental results show a significant dereverberation
capabilities of the proposed algorithm with only low speech distor-
tion.

1. INTRODUCTION

Microphones located within an enclosure capture a large number of
reflections from the surrounding walls, ceiling, floor and other ob-
jects. These delayed arrivals, typically known as reverberation, can
severely deteriorate the speech quality and intelligibility. Speech
dereverberation was therefore the goal of numerous studies in the last
decade, many of them exploit the advantages of multi-microphone
schemes. Of special interest for the current contribution, are multi-
microphone algorithms that utilize the acoustic systems relating the
source and the microphones (or their respective inverse system). In
practice, the acoustic systems of the room are unknown in advance,
and should be estimated from the reverberant measurements. Exam-
ples of such estimation algorithms are the subspace methods in [1],
and the multi-channel linear prediction methods in [2].

A Bayesian approach can also be adopted attributing a statistical
model to the room impulse response (RIR). It was proposed in [3] to
use the unscented Kalman filter for joint RIR estimation and speech
dereverberation. In [4], the Kalman filter is used to estimate the
dereverberated speech, and a particle filter is utilized to estimate the
RIR of the reverberant room.

In [5], an EM scheme for retrieving the relevant speech and room
parameters is presented. The reverberant speech is modelled as an
auto-regressive (AR) process in each frequency band. The algorithm
iterates until convergence. In the E-step the Wiener filter, calculated
at the current values of the parameters, is applied to estimate the
clean speech signal. In the M-step, the current estimated signal is
used for updating the parameters. It was shown by Dempster, Laird

This research was supported by a Grant from the GIF, the German-Israeli
Foundation for Scientific Research and Development.

and Rubin [6] that the EM algorithm is guaranteed to converge to
a local maximum of the likelihood function. Note, that the algo-
rithm presented in [5] is basically an expectation-conditional maxi-
mization (ECM) algorithm, a generalized version of EM algorithm.
Another EM-based algorithm was proposed in [7] where the E- and
M-steps objectives switch roles, namely the channel is identified at
the E-step, and the clean speech at the M-step.

In this paper, we develop an EM algorithm for multi-microphone
dereverberation in the short-time Fourier transform (STFT) domain.
This choice is motivated by the length of the RIRs in the time-
domain. In the STFT domain, the reverberation system can be ap-
proximated by the convolutive transfer function (CTF) model [8].
Under this approximation, the reverberation is modelled as a con-
volution with a finite impulse response (FIR) filter in each subband,
which is much shorter than the original RIR.

The proposed algorithm aims at the ML estimation of the acous-
tic parameters of the room, and the dereverberated speech is actually
estimated as a by-product of the parameter estimation procedure.
For the parameter estimation we use the EM-Kalman scheme. This
scheme was first formulated, in the time-domain, by Weinstein et
al. in [9], and was later used for single microphone speech enhance-
ment by Gannot et al. in [10]. In the E-step of the proposed al-
gorithm, a Kalman smoother is used to estimate the dereverberated
speech. In the M-step, the speech estimate is used to update the pa-
rameters. The algorithm iterates until convergence. Due to assumed
signal model, the EM iterations in the proposed algorithm are sim-
pler than the ECM iterations used in [5]. Simulation results show
that, using the proposed algorithm, reverberation is significantly re-
duced, while speech quality increases.

The structure of the paper is as follows. The statistical model is
formulated in Sec. 2. In Sec. 3, the algorithm derivation is presented.
In Sec. 4, practical aspects concerning the implementation are dis-
cussed. Simulation results are given in Sec. 5, and conclusions are
drawn in Sec. 6.

2. STATISTICAL MODEL

Let x[n] be a clean speech signal in time-domain. The noisy and
reverberant speech signal received by the jth microphone is given
by

zj [n] = x[n] ∗ hj [n] + vj [n], (1)

where hj [n] is the RIR between the speaker and the jth microphone,
and vj [n] is an additive sensor noise.

In the STFT domain, x(t, k) denotes the clean speech in time-
frame t and frequency-bin k. Assuming x[n] is short-term stationary
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signal, and applying a proper STFT analysis intervals, x(t, k) can be
modelled as independent complex-Gaussian random variables

x(t, k) ∼ NC

{
0, σ2

x(t, k)
}
, (2)

where σ2
x(t, k) denotes the short-time power spectra of x[n].

Now, (1) can be represented in the STFT domain as described by [8]

zj(t, k) =

K−1∑
k′=0

∞∑
l=−∞

hj,l(k, k
′)x(t− l, k′) + vj(t, k), (3)

where k and k′ denote the band and cross-band frequency bin in-
dices, respectively, K is the number of frequency bands, and vj(t, k)
the additive noise. As in [11], we consider only the band-to-band fil-
ters (k′ = k), i.e.

zj(t, k) ≈
∞∑

l=−∞
hj,l(k)x(t− l, k) + vj(t, k). (4)

Eq. (4) can be expressed in a vector form as

zj(t, k) = hT
j (k)xt(k) + vj(t, k), (5)

where

hj(k) = [hj,L−1(k), ... , hj,0(k)]
T , (6)

xt(k) = [x(t− L+ 1, k), ... , x(t, k)]T , (7)

and L is the CTF length that depends on the reverberation time. We
further assume that vj(t, k) are stationary complex-Gaussian ran-
dom variables:

vj(t, k) ∼ NC

{
0, σ2

vj
(k)
}
. (8)

Note that due to the approximation in (4), vj(t, k) may comprise an
additional error component such that the variance of vj(t, k)may de-
pend on

{
x
(
t̄, k̄
)
: t̄ ∈ Tt, k̄ ∈ Kk)

}
, where Tt and Kk are close

neighbours of t and k, respectively. In that case, vj(t, k) becomes
a non-stationary signal. In the current study, this phenomenon is
however neglected and the noise variance is assumed to be constant.

3. ALGORITHM DERIVATION

In the following section we develop an ML method for estimating
the parameters. The problem is formulated in Sec. 3.1, the signal es-
timation is presented in Sec. 3.2, and the acoustic parameters estima-
tion is developed in Sec. 3.3. The proposed algorithm is nicknamed
Kalman-EM for dereverberation (KEMD).

3.1. Parameter Estimation Problem

Let Z be a set of measurements:

Z = {zj(t, k) : 1 ≤ j ≤ J, 1 ≤ t ≤ T, 0 ≤ k ≤ K − 1} ,

where T is the number of observed STFT frames, and J the number
of microphones. Our goal is to maximize the likelihood function
f(Z;Θ) with respect to the model parameters:

Θ ≡ {ΘX ,ΘH ,ΘV } (9a)

ΘX ≡
{
σ2
x(t, k)

}
(9b)

ΘH ≡ {hj(k)} (9c)

ΘV ≡
{
σ2
vj (k)

}
(9d)

for each 1 ≤ j ≤ J, 1 ≤ t ≤ T, 0 ≤ k ≤ K − 1.

In order to solve this maximization problem, we adopt the EM
approach. The latent data in this problem is defined to be the clean
speech signal

X = {x(t, k) : 1 ≤ t ≤ T, 0 ≤ k ≤ K − 1} .

In the E-step, the following function is calculated:

Q
(
Θ
∣∣∣Θ̂(�)

)
≡ E

{
log f(Z,X ;Θ)

∣∣∣Z; Θ̂(�)
}
, (10)

where Θ̂
(�)

is the parameter estimate at iteration �. For conciseness,
the frequency index k will be omitted in the rest of the derivation. In

the M-step, Θ̂
(�+1)

is derived by solving:

Θ̂
(�+1)

= argmax
Θ

Q
(
Θ
∣∣∣Θ̂(�)

)
. (11)

The statistical model in Sec. 2 assumes independence between
adjacent time frames, and between speech and noise signals. There-
fore, the log-likelihood of the complete data is:

log f(X ,Z;Θ) = C − 1

2

T∑
t=1

[
log σ2

x(t) +
|x(t)|2

σ2
x(t)

]

− 1

2

J∑
j=1

[
T log σ2

vj +
1

σ2
vj

T∑
t=1

∣∣∣zj(t)− hT
j xt

∣∣∣2] , (12)

where C is a constant value independent of the parameters, the first
summation term is the log-likelihood of clean speech signal, and the
second summation term is related to the noise signal.

3.2. E-Step: Kalman Smoother

Following (10), we need to calculate the expected value of (12) given
the measurement at hand, and the current parameter estimate. Given

Z and Θ̂
(�)

, the expected values of xt and xtx
†
t should be calcu-

lated, where † is the conjugate transpose operator. To obtain the
expected value, the minimum mean square error (MMSE) estimator
should be applied. In order to efficiently calculate the MMSE esti-
mates, we formulate the signal model in state-space and apply the
Kalman smoother [9, 10]:

xt = Φxt−1 +wt,

zt = Hxt + vt, (13)

where xt was defined in (7), the innovation process is given by

wt ≡ [0, ... , x(t)]T ,

the measurement and noise vectors are equal to

zt ≡ [z1(t), ... , zJ (t)]
T ,

vt ≡ [v1(t), ... , vJ (t)]
T ,

and the process and measurement matrices are respectively equal to

Φ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
...

. . .
. . .

...
. . .

. . .
...

. . . 1
0 · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and H ≡ [h1, ... , hJ ]
T , where hj were defined in (6).
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Note, that unlike the time-domain state-space representation
in [9, 10], here the process is not modelled as an AR signal, as evi-
dent from the absence of regression parameters in Φ. In our model,
the statistical dependency of adjacent time-frames of x(t) can be dis-
carded if the overlap between STFT frames is sufficiently small, as
will be discussed in Sec. 5.

Finally, the second-order statistics matrices are defined as:

Qt ≡ E
{
wtw

†
t

}
=

⎡⎢⎣0 · · · 0
...

. . .
...

0 · · · σ2
x(t)

⎤⎥⎦

R ≡ E
{
vtv

†
t

}
=

⎡⎢⎢⎢⎣
σ2
v1 · · · · · · 0
0 σ2

v2

0
. . .

0 · · · · · · σ2
vJ

⎤⎥⎥⎥⎦ .

The Kalman smoothing procedure is summarized in Algorithm 1.
The outcome of the smoothing recursion is the state-vectors es-

timators, and the respective estimation covariance matrices of the
entire observation interval, namely

{
x̂t|T ,Pt|T : 1 ≤ t ≤ T

}
. In

the M-step, given in the sequel, the following first- and second-order
statistics terms are used [10]:

E {xt|Z;Θ} = x̂t|T , (14a)

E
{
xtxt

†
∣∣∣Z;Θ} = x̂t|T x̂

†
t|T +Pt|T . (14b)

3.3. M-Step: Parameter Estimation

The solution of (11) is obtained by setting the partial derivatives with
respect to the parameters to zero, resulting in:

σ̂2
x

(�)
(t) =

����
|x(t)|2, (15)

Algorithm 1: The Kalman Smoother.

Forward recursion (Kalman filter):
for t = 1 to T do

Predict:
x̂t|t−1 = Φ · x̂t−1|t−1

Pt|t−1 = Φ ·Pt−1|t−1 ·ΦT +Qt

Update:
Kt = Pt|t−1H

† [HPt|t−1H
† +R

]−1

et = zt −Hx̂t|t−1

x̂t|t = x̂t|t−1 +Kt · et

Pt|t = [I−KtH]Pt|t−1

end

Backward recursion (smoothing):
for t = T to 2 do

St−1 = Pt−1|t−1Φ
TP−1

t|t−1

et|T = xt|T −Φx̂t−1|t−1

x̂t−1|T = x̂t−1|t−1 + St−1et|T
Pt−1|T = Pt−1|t−1 + St−1

[
Pt|T −Pt|t−1

]
ST
t−1

end

(
ĥ
(�)
j

)T
=

(
T∑

t=1

����
xtxt

†
)−1

×
(

T∑
t=1

zj(t) · x̂†
t

)
, (16)

σ̂2
vj

(�)
=

1

T

T∑
t=1

���� ����∣∣∣∣zj(t)− (ĥ(�)
j

)T
x̂t

∣∣∣∣2

=
1

T

T∑
t=1

{
|zj(t)|2 − 2Re

((
ĥ
(�)
j

)T
x̂t

)
+
(
ĥ
(�)
j

)T ����
xtxt

†
(
ĥ
(�)
j

)∗}
, (17)

where
(̂·) ≡ E

{
(·)
∣∣∣Z; Θ̂(�−1)

}
is the MMSE estimator obtained from the application of Kalman
smoother at the (�− 1)th iteration, as given in (14), and

θ̂(�) = argmax
θ

Q
(
Θ
∣∣∣Θ̂(�−1)

)
is the updated parameter at the �th iteration.

4. PRACTICAL CONSIDERATIONS

The EM algorithm is known to be sensitive to initialization. In this
work, no localization knowledge is considered. We suggest to initial-
ize the acoustic systems H with the direct-path (represented in the
STFT domain) of a source positioned at the broadside of the array,
regardless of its true position. For comparison, we have also used
another initialization procedure, for which the true direct-paths from
the source to each of the microphones are assumed to be known a
priori (which is equivalent to the assumption that the source location
is known). It was experimentally verified that the prior information
on the source location is not required.

An initial value for σ2
x(t, k) should also be set. We have tried two

alternative initialization procedures. In the first, the variance of the
reverberant and noisy signal z1 is used, while in the second, z1 is
first preprocessed with a spectral enhancement (SE) dereverberation
algorithm [11]. In Sec. 5, we show that while the latter alternative
yields better speech quality, the former alternative might suffice in
many practical scenarios.

The reverberant model in (4) suffers from an inherent gain am-
biguity problem, which is evident from the following equation:

hT
j (k)xt(k) =

(
g(k)hT

j (k)
) (

1
g(k)

xt(k)
)
, where g(k) is an ar-

bitrary frequency-dependent gain. Since the algorithm is indepen-
dently applied to each frequency bin, this can result in undesired
fluctuations in the spectral envelope. As a practical cure to this prob-
lem, we have constrained the power profile of the system output to
match the respective power at the input. Hence, at each iteration, the
estimated parameter set (at the kth frequency band) is substituted by
its normalized counterpart:

σ̂2
x

(�)
(t, k)← b2(k) · σ̂2

x

(�)
(t, k) , 0 ≤ t ≤ T − 1 (18)

ĥj

(�)
(k)← 1

b(k)
· ĥj

(�)
(k) , 0 ≤ l ≤ L− 1 (19)

where

b2(k) =

∑T−1
t=0 |z1(t, k)|

2∑T−1
t=0 σ̂2

x

(�)
(t, k)

.

Applying this procedure, guarantees the preservation of the average
spectral profile of the input signal without affecting the convergence
of the algorithm.

3



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Finally, we note that in high signal to noise ratio (SNR) scenar-
ios, estimation errors can result in a negative noise variance esti-
mation (17). To circumvent this phenomenon, the noise variance
estimate was confined to a small positive value. Details regarding
the updated procedure are not given in this paper due to space con-
straints.

5. SIMULATION RESULTS

The proposed algorithm was evaluated with the following procedure.
Clean speech utterances of the same speaker, were drawn from the
TIMIT database [12] and concatenated to a sentence of length 32 s.
Sampling rate is 16 kHz. These sentences were convolved with four
room impulse responses (using an efficient implementation of Allen
and Berkley’s image method [13, 14]). The distance between adja-
cent microphones was set to 8 cm. The reverberation time, T60, was
set to 700 ms, and the impulse response length is 5000 samples.

The reverberant signals were contaminated by pink noise to obtain
reverberated-signal to noise ratio (RSNR) levels of 0, 10, 20, and
30 dB. The RSNR is defined as the ratio of noise-free reverberant
signal power and the additive noise power:

RSNR = 10 log10

∑
t,k |z(t, k)− v(t, k)|2∑

t,k |v(t, k)|2
. (20)

The procedure was repeated for four different speakers in all RSNR
levels.

The STFT analysis window used was 32 ms Hamming window,
with 50% overlap. Higher percentage of overlap will result in a sig-
nificant dependency between adjacent frames, rendering the statis-
tical model of Sec. 2 inaccurate, and hence leading to performance
degradation. The system length L was set to 19 in accordance with
the sampling rate, the length of h in the time-domain, the analysis
window length, and the overlap percentage. The value of L is short
enough to impose a reasonable computational load.

As mentioned in Sec. 4, two alternatives for initializing the clean
speech variance σ2

x(t, k) were compared. In the first alternative (de-
noted Z-init), the instantaneous power of the noisy and reverberant
signal z1 was used . In the second alternative (denoted SE-init),
we used the instantaneous power of x̂1 computed using the single-
channel SE dereverberation algorithm proposed in [11]. The acous-
tic system H was initialized as discussed in 4. Ten EM iterations
were performed.

We used two objective measures to evaluate the performance of
the proposed algorithm, namely the speech to reverberation modula-
tion energy ratio (SRMR) [15] and the log-spectral distortion (LSD).
The LSD distance between x and z̃ ∈ {z, x̂} in frame t is defined
as:

LSD(t) =
1

K

K−1∑
k=0

10 log10

(
max {x(t, k), ε(x)}
max {z̃(t, k), ε(z̃)}

)
(21)

where the minimum value is calculated as:

ε(y) = 10−AdB/10max
t,k
{y(t, k)}

and AdB is set to the desired dynamic range, which is chosen in our
case to be 60 dB. While reduction in reverberation is measured by
higher SRMR, better speech estimate would be indicated by lower
LSD values. The LSD and SRMR average results are summarized
in Tables 1 and 2, respectively. The clean, the noisy and reverberant,
and the KEMD output signals for input RSNR of 20 dB are depicted

Table 1. LSD values for T60 = 700 ms

RSNR (dB) Input Z-init SE-init

0 6.80 4.61 3.85
10 4.79 3.27 2.86
20 3.54 2.83 2.72
30 3.11 2.69 2.99

Table 2. SRMR values for T60 = 700 ms

RSNR (dB) Input Z-init SE-init

0 1.18 2.88 3.72
10 1.93 2.90 3.47
20 2.16 2.83 3.29
30 2.19 2.80 3.25

in Figure 1. Independent of the initialization, the proposed algorithm
is able to reduce the LSD and improve the SRMR. Moreover, we can
conclude that the best results are obtained when initializing with the
SE-init procedure. Unofficial listening tests indicate however that
the Z-init procedure yields slightly less distorted output signal.

6. CONCLUSIONS

An EM algorithm for multi-microphone speech dereverberation was
presented. The algorithm converges to the ML estimate of the acous-
tic parameters. An estimate of the denoised and dereverberated
speech signal is obtained (as a byproduct of the algorithm) at the E-
step by applying the Kalman smoother. The iterative procedure con-
verges in reasonably low number of iterations. The entire algorithm
is applied in the STFT domain, enabling an efficient implementation.
Simulation results show that a significant amount of reverberation is
reduced, with low speech distortion, as indicated by two commonly
used speech dereverberation measures and by the assessment of sam-
ple speech sonograms.
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