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ABSTRACT

We propose a sparse acquisition technique for fiber Bragg

grating (FBG) sensors with subsequent sparse reconstruction

and provide an analytical model for the received sensing sig-

nal. High sampling rates require expensive hardware compo-

nents such as A/D converters or filters which are replaced by

a compressive sensing scheme to abate the sampling rate far

below Nyquist which may also lower the system costs. More-

over, storage requirements are strongly reduced. Our pro-

posed scheme exploits the characteristics and sparse structure

of the reflected signal for which a detailed model is presented.

Index Terms— Fiber Bragg grating sensor, wavelength-

tunable lasers, mode-locked fiber lasers, compressive sensing

1. INTRODUCTION

Fiber Bragg-Grating (FBG) sensors continue to gain more

importance over the last years [1, 2, 3, 4, 5]. Owing to their

versatile structure, they provide highly desirable features as

compared to electrical sensors such as lightweight, small size,

wide bandwidth, resistance against electro-magnetic interfer-

ence and environmental ruggedness [6]. FBGs exhibit high

sensitivity to different impairments, e.g. strain or temper-

ature, which have been extensively studied in the past [2].

They have been applied in a variety of applications ranging

from distributed sensing for structural monitoring [2, 3] over

chemical sensing [7] and medical applications such as optical

coherence tomography [8] or wearable sensors for ubiquitous

health monitoring [4].

Sensors deploying a broadband light source for simultane-

ous observation at all wavelengths suffer from a low local

signal-to-noise ratio (SNR) which motivates the use of ultra-

fast wideband wavelength-tunable (UFWT) fiber lasers. The

authors in [3, 9] presented a new type of UFWT lasers based

on active mode-locking and dispersion tuning without the

need of any tunable filters which reduces hardware costs and

allows for very high sweep rates required for dynamic sens-

ing. The application of UFWT lasers to FBG sensing showed

excellent results in terms of sweep range and scan speed

superior to other existing FBG sensor systems [3, 9]. Due

to this fact, we consider a signal model based on this class

of laser sources as presented in [3, 9]. However, fast sweep

rates require high sampling rates and produce vast data which

increases the hardware costs of an automated sensing and

detection system. Such problems can be tackled efficiently

by compressive sensing (CS) [10].

Our novel approach to FBG sensing aims to exploit the advan-

tages of both, UFWT lasers according to [3, 9] and CS-based

acquisition. Practical verification is provided using experi-

mental data acquired from the original system in [3, 9].

This paper is organized as follows. In Section 2, we present

the modified system setup for CS-based FBG sensing using

UFWT-lasers. A comprehensive signal model for the re-

flected signal is provided in Section 3, while the application

of CS to FBG sensing is explained in Section 4. In Section

5, we show simulations and experimental verification before

concluding this work in Section 6.

2. FBG SENSOR SYSTEM

An FBG sensing system combined with CS has various de-

sirable features such as fast sweep rates, wide sweep ranges

and high spatial resolution at low sampling rates in addition

to small storage and hardware costs. We consider the fiber

sensing system depicted in Figure 1, aiming to address these

requirements. It deploys an UFWT-class laser and is based on

the experimental setup in [3, 9] which has been extended by

a CS-based acquisition module. A semiconductor optical am-

plifier (SOA) acts as gain medium for the UFWT-laser. Using

an external intensity modulator, the injection current of the

SOA is directly modulated by a sine-signal in order to achieve

a pulsed output via active mode-locking [3, 9]. The authors

in [3, 9] propose dispersion tuning to linearly sweep through

the lasing wavelength, where the falling edge of a triangu-

lar waveform is applied to modulate the frequency fm of the

SOA-modulating signal. No tunable filters are needed which

allows for fast sweep rates and reduced hardware costs. A dis-

persion compensating fiber (DCF) forms a highly dispersive

laser cavity in which mode-locking is only possible within a

small spectral range around a center wavelength. When the

frequency of the modulating signal is changed, the center las-
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ing wavelength is swept along the SOA gain bandwidth and

pulses at different wavelenghts are constantly generated. Fre-

quency and wavelength changes show a linear dependence.

The tuning sensitivity is measured in wavelength shift per Hz

of change in the modulation frequency (nm/Hz) [3, 9].

We assume a scaling of the optical power introduced into the

sensing fiber such that non-linear effects can be neglected.

The FBGs represent the sensing points of the system. Each

of their reflectivity spectra is shifted with respect to the others

by detuning. As in [3, 9], we choose FBGj , j ∈ {1, ...,K}
as a reference point which is never subject to any kind of per-

turbation and we call the situation where none of the other

FBGs is perturbed, equilibrium state. During one wavelength

sweep, only pulses at the individual FBG resonance wave-

lengths λB,k, k = 1, ...,K , will be reflected and received

with a delay corresponding to the sweep rate and the FBG

position. Variations in temperature or strain cause a shift of

the resonance wavelength and, hence, affect the delay of the

received signal. At high sweep rates, the wavelength evolves

faster and is swept quickly through the resonance region of

the FBGs resulting in a reflected signal of small temporal ex-

tension. The same holds for a smaller laser linewidth which

can be achieved by providing higher dispersion in the laser

cavity or by increasing fm [3, 9]. Strongly confined reflec-

tions offer higher spatial resolution.

For the k-th FBG, the relative delay of the received signal

with respect to the signal reflected at FBGj is given by

∆t(k,j) = |τk − τj |, k, j = 1, ...,K, k 6= j , (1)

where τk, τj are the total delays of the k-th and j-th FBG

with respect to the trigger which is reset at the sweep rate.

The system parameters,∆t(k,j), ∀ k, j, are well known for the
equilibrium state. When the resonance wavelength is shifted

by a small value δλk to λB,k ± δλk due to perturbations,

the time delay varies according to ∆̃t(k,j) = |τ̃k − τj | =
|(τk±δtk)−τj |. Denoting the overall swept wavelength range
by Rsw and the sweep rate by Sr, the shift of the reflected

wavelength is related to the delay variation δtk by [3, 9]

δλk = δtk · Sr · Rsw . (2)

These delays are well characterized by comparing the the am-

plitude peaks of the reflected signal.

Finally, a slow photodiode (PD), unable to follow the fast

pulses, is adopted to extract the pulse train envelope of the

received signal [11] which is then gathered via CS-based ac-

quisition as described in Section 4. One sweep corresponds to

one CS-sample. If we denote the sweep duration Tsw = 1/Sr,

the total delay of acquiring M CS-samples, in addition to a

calculation time Tcal for subsequent signal reconstruction, be-

comes Tup = M ·Tsw+Tcal . The sensor measurements of the

k-th FBG, sk(t), k = 1, ...,K , show functional dependence

on the perturbation of interest such as temperature or strain,

and can be described in terms of the measured delay to the
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Fig. 1. System setup of a CS-based FBG sensor using a

UFWT-class laser according to [3, 9].

reference point (FBGj) by

sk(Tn) = fk(∆̃t(k,j)) , (3)

where Tn = n · Tup, n ∈ N, is the time instant when the

n-th sensor measurement is available. The functions fk, k =
1, ..,K , depend on the specific characteristics of the FBGs

and the type of perturbation. With all this information at hand,

we arrive at an automated process for detecting andmeasuring

impairments using CS-based FBG sensing systems.

3. SIGNAL MODEL

A comprehensivemodel for the reflected signal has to account

for the laser class in use and all significant impairments the

signal experiences during the sensing process such as fiber

propagation, reflection at the FBGs and photodetection. We

assume knowledge about the laser source, fiber length, disper-

sion parameters, as well as location and reflection properties

of the single FBGs. The first and second order dispersion

parameters of the fiber, D(λ) and S(λ), are derived from the

Sellmeier equation at wavelengthλ and with parameters given

e.g. in [12]. Practically, they are determined by a three-/five-

term Sellmeier fit to the measured group delay [13].

a) Laser Output Pulses:

The pulse shape of the emitted light for an actively mode-

locked fiber laser in the baseband frequency domain can be

described by chirped Gaussian pulses of the form [3, 9]

A(λ)(ω) = e−
ω2

2δω2 . (4)

with wavelength-dependent bandwidth

δω =

√
π
fm
λ

(
8πc0Γ

|D(λ)|LDCF

)
. (5)

c0 is the speed of light, Γ the modulation index for amplitude

modulation of the light within the laser cavity, fm is the mod-

ulation frequency of the SOA-modulating signal and LDCF is

2
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the length of the DCF (laser cavity) [3, 9]. During one sweep,

the i-th pulse in the emitted pulse train is comprised of the

superimposed modes around the instantaneous center wave-

length λi. The pulse repetition rate in our model is the same

as the modulation frequency (and varies accordingly), which

is consensual with [3, 9]. The instantaneous delay between

two subsequent pulses at index i is τrep,i =
1

fm,i
. The tempo-

ral waveform consists of the sum of all pulses exhibited from

the laser during one sweep. Its shape is determined by the

wavelength-dependent gain profile of the SOA within Rsw.

b) SOA Gain Profile:

Signal amplification and the gain in the active region of the

SOA can be derived from the photon- and carrier-density rate

equations [14]. We use a 3rd-order model for the SOA gain

profile and basis parameters from [14]:

g(λ) = a1(N −N0)− a2(λ − λN )2 + a3(λ− λN )3 . (6)

a1−3 are empirical constants to fit the measured data, λN is

the maximum gain wavelength and N,N0 are carrier densi-

ties [14]. We fitted the model to achieve a 3dB bandwidth of

85.7 nm according to the reference system in [3, 9].

c) Fiber Transmittion:

The generated pulses at the laser output are now transmitted

over a single-mode fiber (SMF) of length L to the location of

an FBG. For small intensities, non-linear effects are negligi-

ble and we can find the baseband transfer function of the fiber

of length L, including 2nd-order dispersion, by [15, 16]

H(λ)(ω,L) = e(−α(λ)+j
β
(λ)
2
2 ω2+j

β
(λ)
3
6 ω3)L , (7)

in which α(λ) is the damping as determined in [17], and β
(λ)
2 ,

β
(λ)
3 are respectively the 1st- and 2nd-order terms in the Tay-

lor expansion of the propagation constant β(ω). These are

derived from D(λ), S(λ) according to [15] for the instanta-

neous center lasing wavelength λi of each pulse.

d) Bragg Grating Model:

An FBG can be modeled by a uniform, periodic perturbation

of the refractive index along the fiber core in propagation (z-)
direction as in [18]:

n(z) = n0 +∆n

(
2πz

Λ

)
, z ∈ [0, LFBG] , (8)

whereLFBG is the total grating length, n0 is the average refrac-

tive index within one spatial period Λ, and ∆n is the pertur-

bation amplitude. The effect of the grating on the signal is

well described by the grating equation, from which the Bragg

condition is derived that determines the wavelength of max-

imum reflectivity [18]. Based on this, the reflectivity for the

electric field amplitude is found using coupled mode theory,

i.e. [18, 19]

ρ(λ) =
−κ sinh(s L)

∆β sinh(s L) + i s cosh(s L)
, (9)

where s =
√
κ2 −∆β2, κ is the coupling coefficient and

∆β = β − π
Λ is a detuning wavevector for a mode with prop-

agation constant β according to [18]. Since these parame-

ters depend on the wavelength, ρ(λ) depends implicitly on

the wavelength as well.

e) Received Waveform at the Photodiode:

After reflection at the grating, the signal travels back the same

way to the photodiode (PD) of the receiver. Thus, the fiber

transfer function is applied twice. When the center frequency

of the sweep range is Ω0 = c0/λ0, the optical frequency of

the i-th pulse isΩi = Ω0−∆ωi, where∆ωi = c0

(
1
λ0

− 1
λi

)
.

Using equations (4,6,7,9), we obtain an expression in the fre-

quency domain for the overall received signal pulse train, re-

flected at an FBG located at distance L in the fiber:

Er(ω) =
∑

i

gi ρi e
−jωτrep,iAi(ω −∆ωi)Hi(ω −∆ωi)

2 .

(10)

Index i indicates the dependence of each element on λi. Tak-

ing the inverse Fourier transform ofEr(ω) results in the time-

domain signal Er(t). The photodetection process, described

by the responsitivity R(λ) of the PD, depends on the quan-

tum efficiency η of the material at λi [20] and distinct PD

types require individual models. For simplicity, we assume

the incident electric field and, hence, the intensity I(~r, t) be-
ing uniformly distributed at all locations ~r on a photodetector
with unit area Ã. Then, the incident power becomes P (t) =∫
Ã
I(~r, t)dÃ = 1

Z
|Er(t)|

2, where Z is the wave impedance

of the medium [20]. At a sweep rate Sr, we denote the time-

dependent wavelength by λ(t), so the detected photocurrent

is given by [20]

i(t) = R(λ(t)) · P (t) =
λ η q

h c0

|Er(t)|
2

Z
, (11)

where h is Planck’s constant and q is the elementary charge

[20]. We deploy a slow photodiode that cannot follow the fast

pulses to extract the pulse train envelope according to [11].

This can be modeled by a lowpass filter with transfer function

HLP(ω), i.e.

ienv(t) =
1

2π

∫
∞

−∞

ejωt [HLP(ω) · i(ω)] dω . (12)

4. COMPRESSIVE FIBER SENSING

Any complex signal r ∈ CN can be represented by

r = Ψx, and x = ΨHr ∈ C
N . (13)

with basis matrixΨ ∈ CN×N and sparse coefficient vector x

[10]. CS requires r to be K-sparse, meaning that x has only

K non-zero entries [10]. Compared to Nyquist sampling, the

number of acquired samples is strongly reduced since the ob-

servations are taken byM ≪ N random projections, i.e.

y = Φr = ΦΨx := Θx ∈ C
M . (14)

3



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

The measurement matrix Φ ∈ RM×N has independent and

identically distributed entries following a certain random dis-

tribution [10]. The signal can be reliably recovered by solving

the underdetermined equation system in (14) using sparse op-

timization for which efficient solvers are available [10].

When the received signal of an FBG sensing system is sam-

pled at the Nyquist rate with sampling period TS, N sam-

ples of the pulse train envelope are collected, i.e. r(n) =
ienv(nTS), n = 0, ..., N − 1. In contrast, when using CS to

acquireM ≪ N measurements (M wavelength sweeps), the

average sampling rate is significantly reduced. The entries

of Φ can be chosen from the Database-Friendly distribution

[21] which requires little storage owing to its sparse struc-

ture. Moreover, its high probability of zero-projection allows

to reduce computational costs and required average sampling

rate [21]. Basically, Φ can be generated via pseudo-random

sequences without static memory allocation using a fixed ini-

tialization. AlsoΨ can be iteratively constructed from a view

parameters. Thus, the total storage reduction is ∼ (N −M).
As shown in Figure 2, the received signal based on our model

is intrinsically sparse, so ideallyΨ = I is the unity matrix and

r = x. Then, the non-zero elements in x indicate the tempo-

ral positions and relative delays of the reflected signals. The

number of FBGs in our system, K , is usually known and the

number of appearing peaks in x can be controlled accordingly

in the reconstruction algorithm, e.g. by limiting the number

of iterations as presented in [22]. However, under non-ideal

conditions in practical systems, the received signal may not

exhibit a sparse range profile. In that case, it is possible to

apply CS by selecting Ψ from a wavelet-basis, e.g. Symlets.

As shown in Figure 3, a peak detection algorithm can subse-

quently determine the relative distance of the reflected signals

for the single FBGs with respect to the reference point.

The perturbation at the FBGs and, hence, the coefficient vec-

tor x is assumed constant during the acquisition of M CS

samples (M wavelength sweeps). Nevertheless, fast acquisi-

tion is achieved by exploiting the high sweep rate of UFWT-

lasers which allows to followmoderately time-varying pertur-

bations at the FBGs. Efficient dynamic updating schemes in

the reconstruction algorithm further alleviate this constraint

since the calculation time Tcal is reduced.

5. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we show simulations of the analytical model

from Section 3 and verify our proposed technique using ex-

perimental data taken from the system in [3, 9]. The Ya-

mashita laboratory, University of Tokyo, Japan, kindly pro-

vided measurements for this purpose.

The left side of Fig. 2 depicts the train of short pulses (∼ 1
ns) emitted by the UFWT laser during one sweep. It clearly

follows the SOA gain profile and is in good agreement with

the measurements in [3, 9]. In Fig. 2 (middle), the reflectivity

spectrum of the FBG, according to our model, is compared to
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Fig. 3. CS-based fiber sensing using symlets and peak detec-

tion applied to experimental data taken from [3, 9]

the experimentally determined reflectivity of FBG1 in [3, 9].

A proper fitting is achieved here as well. Finally, in Fig. 2

(right), we show N = 112 samples of the received photocur-

rent from (12), acquired at the Nyquist rate, and with K = 4
as in [3, 9]. After reconstruction, the relative peak delays indi-

cate the amount of perturbation. Table 1 shows the detection

rate and Tcal vs. the numbers of CS-samples averaged over

5000 Monte Carlo runs and with accuracy ∼ 0.6µs. The ex-
perimental data in Figure 3 (left) shows broadening and over-

lap of the received signals which, to the belief of the authors

in [3, 9], originates from an increased linewidth at high scan

rates and from insufficient speed of the A/D converter. Thus,

we adopted a wavelet basis (Symlets) for CS as mentioned

in Section 4. Figure 3 (right) shows the reconstructed signal

when either all or only the significant wavelet coefficients are

used. We employed a homotopy-based solver as e.g. in [22].

# Meas. (out of N ) 40 50 60 70 80 90

Det. Rate (in %) 53 62 70 76 80 85

Tcal (ms) 1.5 1.9 2.3 3.5 7.1 7.2

Table 1. Peak detection and Tcal for differentM

6. CONCLUSION

We presented a sparse acquisition scheme for FBG sensing

using UFWT-class lasers as proposed in [3, 9]. Their com-

bined advantages are: reduced hardware costs (no tunable fil-

ters), high sweep rates for dynamic sensing which is also ad-

vantageous for CS, as well as reduced storage requirements

4
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and abated average sampling rate. The latter has potential

to further reduce hardware costs, replacing costly high-speed

A/D converters. Our proposed CS-scheme uses the sparse

range profile of the reflected signal for direct peak detection

but it also works for non-sparse range profiles via wavelet

bases. We further provided a comprehensive signal model

that can be applied for FBG sensors based on UFWT-class

lasers with arbitrary sensing structure. The application of our

technique to dynamic sensing is currently under investigation

and planned to be reported soon.
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