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ABSTRACT
We study and solve the previously unstudied problem of find-
ing both sender and receiver positions from time of arrival
(TOA) measurements when there is a difference in dimen-
sionality between the affine subspaces spanned by receivers
and senders. Anchor-free TOA network calibration has uses
both in sound, radio and radio strength applications. Using
linear techniques and requiring only a minimal number of re-
ceivers and senders, an algorithm is constructed for general
dimension p for the lower dimensional subspace. Degener-
ate cases are determined and partially characterized as when
receivers or senders inhabits a lower dimensional affine sub-
space than was given as input. The algorithm is further ex-
tended to the overdetermined case in a straightforward man-
ner. Simulated experiments show good accuracy for the mini-
mal solver and good performance under noisy measurements.
An indoor environment experiment using microphones and
speakers gives a RMSE of 2.35cm on receiver and sender po-
sitions compared to computer vision reconstruction.

1. INTRODUCTION

Sound ranging or sound localization has been used since
world war I to determine the sound source using a number
of microphones at known locations and measuring the time-
difference of arrival of sounds. The same mathematical model
is today used both for applications based on acoustics and ra-
dio and both for signal strength or time-based information
such as time of arrival (TOA) or time differences of arrival
(TDOA), or a combination thereof. Although such problems
have been studied extensively in the literature in the form of
localization of e.g. a sound source using a calibrated detector
array, the problem of calibration of a sensor array using only
measurement has received less attention.

In this paper we study the previously unstudied sensor
network calibration problem using only TOA measurements
for the particular case where there is a difference in dimen-
sionality between the affine subspaces spanned by senders

The research leading to these results has received funding from the
strategic research projects ELLIIT and eSSENCE, and Swedish Founda-
tion for Strategic Research projects ENGROSS and VINST(grant no. RIT08-
0043).

and receivers. We prove that such problems can be solved
in closed form using linear techniques and give a solution
scheme for general dimensionality p. Furthermore, the solver
is extended to the overdetermined cases, and simulated and
real experiments supports the feasibility of the method. The
proposed method could be a part of sensor fusion methods and
for Simultaneous Localization and Mapping, where a plausi-
ble problem is to track a receiver moving in 2D, e.g. on a
building floor, when senders are in 3D in unknown positions.

Several previous works dealing with sensor network cali-
bration rely on prior knowledge or extra assumptions of loca-
tions of the sensors to initialize the problem, see e.g. [1, 2, 3].

In [4] a far field approximation was utilized to solve the
TOA and TDOA case. Initialization of TOA networks using
only measurements has been studied in [5, 6], where solu-
tions to the minimal cases of three senders and three receivers
in the plane, or six senders and four receivers in 3D are given.
Initialization of TDOA networks is studied in [7], where solu-
tions were given to two non-minimal cases of ten senders and
five receivers. In [8, 9] a TDOA setup is used for indoor navi-
gation based on non-linear optimization, but the methods can
get stuck in local minima and is dependent on initialization.

Of the above contributions, [4, 5, 6, 7] can be said to solve
a calibration problem with either minimal or close to min-
imal data. Minimal algorithms for sensor network calibra-
tion are of interest in random sample consensus (RANSAC)
schemes to weed out outliers in noisy or incorrectly matched
TOA/TDOA measurements. The difference in dimensional-
ity problem we study here is either a degenerate case for the
papers above, or requires estimating several extra variables
because of the assumption that receivers and senders lie in a
same dimensional subspace. Thus the methods in the papers
above are ill suited or cannot be applied to the problem at
hand.

2. PROBLEM FORMULATION

In this paper we study the so called TOA node calibration
problem when the dimension of the affine subspaces spanned
by receivers and senders are different. We assume that (i) the
speed of sound v is known, and thus all time measurements
are transformed to distances by multiplication by v, (ii) re-
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ceivers can distinguish which TOA signal comes from which
sender. This can be done in practice by e.g. separating the
signals temporally or by frequency.

Problem 2.1. Assume receiver coordinates ri, i = 1, . . . ,m
are embedded in a p-dimensional affine space Π and sender
coordinates sj , j = 1, . . . , n are embedded in a d2-dimensional,
possibly infinite, space Π2, where Π ⊂ Π2. Given absolute
distance measurements dij = ||ri − sj||2, determine ri and
sj .

Without loss of generality, receivers and senders can be
interchanged. We need to consider what we can expect of a
solution. First of all, while still fulfilling the distance mea-
surements, a solution can be changed according to

r̄i = ri + t, s̄j = sj + t,
r̄i = Rri, s̄j = Rsj ,

where R is a rotation and/or mirroring matrix and t a trans-
lation. Assuming a rotation so that the last coordinate of the
receivers ri are 0, the problem has undeterminable degrees
of freedom (gauge freedom) of p from the translation and
p(p − 1)/2 from the rotation, which gives a total number of
p + p(p− 1)/2.

Furthermore, for the senders sj one can only hope to de-
termine the orthogonal projection onto Π and the distance to
Π, as a rotation around Π will keep the receivers constant
but change the senders, without changing the measurements.
Therefore, for practical purposes one can assume that senders
are embedded in a p+ 1 dimensional space. Assuming this is
the case, each sender can still be mirrored in Π without chang-
ing the distances, giving a sign ambiguity on each sender’s
last coordinate.

We denote the problem as minimal if the number of solu-
tions ri, sj for generic distance measurements dij is finite and
at least one up to translation, rotation, mirroring in coordinate
axis and mirroring of each sj in Π.

There are many ways to account for these ambiguities.
We choose to translate and rotate the coordinate system so
that (i) the last coordinate of ri is 0. The extra coordinate
for sender j will thus be sj’s last coordinate. The rest of the
rotation ambiguity is left free, and fixed first when comparing
two solutions using [10]. (ii) The translation is locked by
setting r1 = 0. (iii) The mirroring is locked by setting sj’s
last coordinate to positive.

3. SOLVING THE TOA CALIBRATION PROBLEM

Let D = [dij ]m×n be the matrix with the distance measure-
ments, and D2 =

[
d2ij
]
m×n

be the matrix with the distance
measurements squared. As d2ij = (ri − sj)

T (ri − sj) =

rTi ri− 2rTi sj + sTj sj , the squared distances can be written as

d2ij =
[
1 −2rTi rTi ri

] [
sTj sj sTj 1

]T
= EiFj .

This leads to that D2 = EF where E is a matrix with Ei as
the ith row and F is a matrix with Fj as the jth column. This
factorization was used in [7]. As the last coordinate of ri only
has zeros, the second last column of E will be zeros, multi-
plying with the second last row of F . We can thus remove
this row and column from the expression, forming

d2ij =
[
1 −2r̃Ti r̃Ti r̃i

] [
sTj sj s̃Tj 1

]T
= ĒiF̄j ⇒

D2 = ĒF̄ ,
(1)

where r̃i, s̃j are ri, sj with the last coordinate removed, Ē is
an m× (p + 2) matrix and F̄ is an (p + 2)× n matrix. This
tells us that the rank of D2 is at most p + 2.

We form the matrix S = [sij ](m−1)×n, i = 1, . . . ,m− 1

sij = d2i+1,j − d21,j

= (ri+1 − sj)
T (ri+1 − sj)− (r1 − sj)

T (r1 − sj)

= r̃Ti+1r̃i+1 − 2r̃Ti+1s̃j

=
[
−2r̃Ti+1 r̃Ti+1r̃i+1

] [
s̃Tj 1

]T
= ẼiF̃j ,

(2)

as r1 = 0 and ri’s last coordinate is 0. By using the first
receiver we have eliminated the quadratic constraints on the
senders, effectively forming equations in our unknowns ri
and sj which only depends on the p first coordinates, i.e. their
orthogonal projection in Π. The equations are also linear in
sj .

We note that S = ẼF̃ , where Ẽ is an (m− 1)× (p + 1)
matrix where the ith row is Ẽi+1 and F̃ is an (p + 1) × n
matrix where the jth column is F̃j . This tells us that S is at
most of rank p + 1.

3.1. Solving in Π

We seek a factorization S = ẼF̃ such that F̃ has a last row
of ones, and the quadratic constraints in each row of Ẽ is
fulfilled (2). Assuming that S has rank p + 1, we start by
doing the compact singular value decomposition (svd)

S = U︸︷︷︸
X0

ΣV T︸ ︷︷ ︸
Y0

= X0Y0, (3)

where U , Σ and V are (m− 1)× (p + 1), (p + 1)× (p + 1)
and n× (p + 1) respectively. We continue by expanding

S = X0B
−1
0︸ ︷︷ ︸

X1

B0Y0︸ ︷︷ ︸
Y1

= X1Y1, (4)

where B0’s last row is chosen so that Y1 will have a last row
of ones. This is done by solving a linear system of equations
with p+1 unknowns, which tells us that we need p+1 senders
so that we can solve the system uniquely. This can always be
done as Y0 has full rank, implied by the assumption that S has
rank p + 1.
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The other p rows of B0 are calculated with Gram-Schmidt
so that B0 is a unitary real matrix times a scalar. Then the
condition number of B0 will be 1 so that X0B

−1
0 does not lose

unnecessary precision. Y1 does now have the right properties
suggested by (2) but X1 does not. We continue by expanding

S = X1B1︸ ︷︷ ︸
Ẽ

B−1
1 Y1︸ ︷︷ ︸
F̃

= ẼF̃ , B1 =

[
A b
~0 1

]
, (5)

where A is a general invertible p × p matrix, b is a general
p× 1 matrix and ~0 is a vector of zeros. This implies that B−1

1

has the same restrictions as B1 which gives the most general
form for preserving the last row of ones and rank in Y1 when
forming B−1

1 Y1. It remains to determine A and b.
This is done by enforcing the quadratic constraints of the

rows of the left matrix in (2) on X1B1. We denote row i of
X1 as

[
vi vi,p+1

]
where vi is a vector of length p and vi,p+1

is the last element. The constraints then translate to

viAATvT
i = 4 (vib + vi,p+1) . (6)

As AAT = ARRTA for any rotation and/or mirroring matrix
R, and this R equates exactly to a rotation/mirroring of ri and
sj in Π, we need only to solve (6) for the symmetric matrix
C = ATA. This gives p + p(p + 1)/2 unknowns from b and
C, which tells us that we need 1 + p + p(p + 1)/2 receivers
to be able to solve the linear equations (6) in the unknowns C
and b uniquely, as well as the system having full rank. The
extra receiver comes from losing a row in S by subtracting
the fist row of D2 in (2).

When C and b has been determined, an A can be calcu-
lated from e.g. cholesky factorization in C. Now the left and
right hand factorization of S, Ẽ = X1B1 and F̃ = B−1

1 Y1

can be calculated. r̃i+1 can then be calculated as the first p
elements of row i of Ẽ divided by −2, and s̃j are the first p
elements in respective column of F̃ , according to (2). The
last coordinate sj can then be recovered by using (1) and the
last coordinate of ri is 0. Accordingly, we have the following
algorithm:

Algorithm 1.
Input: Dimension p of receiver space, TOA measurement ma-
trix D = [dij ] of size m = 1 + p + p(p + 1)/2 by n = p + 1.
Output: Receiver and sender positions ri and sj
Postconditions: (i) S has rank p + 1, (ii) linear system
viCvT

i = 4 (vib + vi,p+1) has full rank, (iii) C is positive
definite

1. Set S :=
[
d2i+1,j − d21,j

]
2. Calculate the svd S = UΣV T and set X0 to first p + 1

columns of U and Y0 to first p + 1 rows of ΣV T

3. Calculate B0 such that B0Y0 has last row of 1’s and
such that B0 is unitary times a scalar

4. Set X1 := X0B
−1
0 , Y1 := B0Y0, vi to the first p ele-

ments of row i of X1 and vi,p+1 to the last.
5. Solve for the unknowns in the symmetric matrix C

and vector b the m − 1 linear equations viCvT
i =

4 (vib + vi,p+1)
6. Calculate the cholesky decomposition C = AAT and

set B1 :=

[
A b
~0 1

]
7. Set Ẽ := X1B1, F̃ := B−1

1 Y1, r̃i+1 to the p first ele-
ments in row i of Ẽ divided by -2, and s̃j to the first p
elements of column j of F̃

8. Solve for sj,z to the positive sign solution,
d21j = [̃sj sj,z]

T
[̃sj sj,z]

9. Set r1 := ~0, ri :=
[
r̃i 0
]

and sj = [̃sj sj,z]

3.2. Minimal cases

By counting the degrees of freedom of the problem we get
pm + (p + 1)n − p − p(p − 1)/2. The positive terms come
from the coordinates of ri and sj respectively, and the nega-
tive terms come from the gauge freedom in Section 2. We
have mn measurements, whereas the algorithm needs that
m = 1 + p + p(p + 1)/2 and n = p + 1, giving mn =
(1 + p + p(p + 1)/2)(p + 1) measurements. Comparing the
number of measurements to the degrees of freedom, we see
that they are equal. This tells us that the algorithm is minimal
for all sizes of dimension p of the subspace Π.

Note that the algorithm tells us that the problem has es-
sentially only one solution: Throughout the algorithm, we do
not lose any solutions due to specific choices of parameters
except equivalent solutions up to gauge freedom and mirror-
ing in Π, according to section 2.1.

Assuming that the receivers and senders are in a same di-
mensional subspace with dimension p + 1, we can use the
algorithm to just solve in Π, skipping step 8 and 9 in the algo-
rithm. Comparing degrees of freedom to measurements now
suggests an overdetermined system. Solving this problem in
3D we need 10 receivers and 4 senders, which is on par with
[7] which also utilizes linear techniques, whereas [6] solves
the minimal case of 6 receivers and 4 senders, but involves
solving systems of polynomials.

3.3. Degenerate cases

Theorem 3.1. Degenerate cases for the minimal algorithm
are when i) the assumption that S is of full rank, i.e. p + 1,
does not hold or ii) step 5 gives a linear system that does not
have full rank.

i) happens iff X0 or Y0 in the svd in step 2 is rank deficient.
Y0 is rank deficient iff the projection onto Π of the senders,
s̃j , lie in an even lower dimensional affine subspace than Π.
X0 is rank deficient if receivers ri span a lower dimensional
subspace than Π.

3
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Proof. Looking at the assumptions for the algorithm to work,
the only ones are the ones mentioned in (i) and (ii). Thus they
constitute the degenerate cases.

The matrix S is trivially rank deficient iff X0 or Y0

is. Y0 is rank deficient iff F̃ is rank deficient, as F̃ is Y0

multiplied with invertible matrices. F̃ is rank deficient iff
∃ a1, . . . , ap+1 ∈ R, not all = 0, such that

p∑
i=1

aiF̃i = ap+1
~1 (7)

as F̃ has a last row of ones. As each row i of F̃ , F̃i, consists
of the ith coordinates of s̃j , (7) is equivalent to that s̃j lie in
an affine space with dimension < p.

The matrix X0 is rank deficient iff Ẽ is rank deficient,
as Ẽ is X0 multiplied with invertible matrices. Ẽ is rank
deficient if the first p columns do not span a p-dimensional
space. As column k contains the kth coordinates for ri, this
gives that ri spans a lower dimensional subspace than Π.

Note that the degenerate cases characterized in i) is in-
herent to the problem, not the algorithm. If the receivers or
senders lie in a lower dimensional subspace than assumed,
there are fewer degrees of freedoms to estimate than assumed.

A special case, resulting in complex solutions, is when
the resulting matrix C in step 5 is not positive definite. If
this happens, then there exists no real solution for A such
that C = AAT , and A will have to be complex, for ex-
ample solved by eigenvalue decomposition C = QTDQ =
QT
√
D
√
DQ = AAT , giving complex solutions ri and sj

fulfilling the measurements in D. This can also happen for
the p + 1th coordinate in sj , if the projection s̃j is larger than
d21j , which is used to calculate the last coordinate in step 8

3.4. More receivers and senders

When having more than 1 + p + p(p + 1)/2 receivers, p + 1
senders and measurements dij possibly corrupted by noise,
the algorithm can be expanded by i) approximating S in (3)
by the closest rank p+1-matrix in Frobenius norm, by setting
the singular values after the p + 1 first to zero, ii) taking the
linear least squares solution to the system of equations result-
ing from (4) and (6) respectively. This will not be an optimal
solution in any formal way, but will give a good initial so-
lution, which can serve e.g. as an initial estimate for further
non-linear optimization techniques.

From here on the extended algorithm will be used. Note
that when having only the minimum numbers of receivers and
senders, they are equivalent.

4. SIMULATED EXPERIMENTS

For all experiments, ground truth receivers ri,gt and senders
sj,gt have been simulated, and from there a distance matrix
Dgt has been calculated, which serves as input. The receivers,

residing in the subspace Π of dimension p, has been drawn
from a uniform distribution over a unit cube centered around
the origin. The senders sj,gt, residing in Π2 with dimension
p + 1, have their distances from the origin drawn from a uni-
form distribution U(0.1

√
(p),

√
(p)) and then uniformly dis-

tributed over the sphere with that radius.
To be able to evaluate the quality of the solution, ri, sj

are rotated, mirrored and translated so that
∑

i ||R(ri − t)−
ri,gt||22 +

∑
j ||R(sj − t) − sj,gt||22 is minimized, where

R and t is a rotation/mirroing and translation in Π respec-
tively. Finding R and t is done by using [10]. The relative
error of the solution is then calculated as ||ri − ri,gt sj −
sj,gt||/||ri,gt sj,gt||.

For the minimal solver, 1000 experiments were run for
p = 2, 3, 4 each. Histograms of relative errors can be seen in
figure 1. As seen the errors are small. The mean computa-
tional time of the algorithm over these runs was 3.0 ms, run
on a computer using Intel Core 2 Duo CPU with two 2.8 GHz
processors, implemented in Matlab.
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Fig. 1. Histograms of relative errors for the minimal solver.

In figure 2 the relative errors of 1000 runs, p = 2, for
different number of receivers and senders, are plotted against
additive white Gaussian noise on the measurements D. The
errors are only calculated for the real solutions, as the com-
plex ones do not have a physical meaning, though they fulfill
the measurements D if not overdetermined. Complex solu-
tions correspond to the special cases described in Section 3.3.

5. REAL DATA

Using seven Shure SV100 microphones and four Roxcore
portable speakers, all connected to a Fast Track Ultra 8R
sound card in an indoor environment, see figure 3, TOA
measurements were obtained by matching sounds from dif-
ferent speakers to sound flanks recorded from different mi-
crophones. The sounds were separated temporally so that the
matching of which sound came from which speaker could
be done. Matching was done using the beginning of emit-
ted sounds, thus ignoring reflections as there exist a direct
path between speakers and microphones. Microphones were
placed on a table, i.e. a plane, and speakers throughout the
room, so that p = 2.
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Fig. 2. Relative errors for 1000 simulations each plotted
against additive Gaussian noise as graph, done for different
number of receivers (r) and senders (s) with p = 2. Box plot
shows the percentage of complex solutions.

To have a basis for comparison, a computer vision recon-
struction of microphones and speakers were made, based on
cell phone images of the experimental setup. The computer
vision solution is then up to rotation, translation and scale.
By running the algorithm for p = 2 and aligning the solution
with the computer vision solution, we got a root mean square
error of 2.35 cm. See figure 3 for a visualization.
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Fig. 3. (a) Experiment with speakers and microphones.
Speakers are emphasized with circles. (b) shows the re-
constructed solution using the algorithm (red) versus a re-
construction done with computer vision techniques (blue).
Speakers are x and microphones are +.

6. CONCLUSIONS

In this paper we have solved the previously unsolved TOA
calibration problem when receivers and senders are in dif-
ferent dimensional affine subspaces, for general dimensions.
The primary interesting cases are when the lower dimensi-
noal subspace is on a line or in a plane, whereas higher di-
mensional solutions is for now of theoretical interest. The
difference in dimensionality problem is an important degen-
erate case for previous papers focusing on the TOA calibra-
tion problem. We solve the minimal case and it is shown to
be 1 + p + p(p + 1)/2 receivers inhabiting a subspace of di-
mension p, and p+ 1 senders inhabiting a higher dimensional
subspace. Only one solution exists up to gauge freedom and

mirroring of senders in the subspace. We determine the de-
generate cases and they are partially characterized. As a by-
product we show how to solve the TOA calibration problem
for same dimensional case for general dimensions, but this is
not a minimal solver. The algorithm is extended in a straight-
forward manner to be able to handle more than a minimal
configuration of receivers and senders, and can serve as an
initial estimate for non-linear optimization.

Simulated and real experiments support the feasibility of
the algorithm. Experiments on the minimal solver show small
relative errors, and overdetermined systems handles additive
noise well.

7. REFERENCES

[1] S. T. Birchfield and A.. Subramanya, “Microphone array
position calibration by basis-point classical multidimen-
sional scaling,” IEEE transactions on Speech and Audio
Processing, vol. 13, no. 5, 2005.

[2] M. Crocco, A. Del Bue, and V. Murino, “A bilinear ap-
proach to the position self-calibration of multiple sen-
sors,” Signal Processing, IEEE Transactions on, vol.
60, no. 2, pp. 660–673, 2012.

[3] V. C. Raykar, I. V. Kozintsev, and R. Lienhart, “Po-
sition calibration of microphones and loudspeakers in
distributed computing platforms,” IEEE transactions on
Speech and Audio Processing, vol. 13, no. 1, 2005.

[4] Y. Kuang, E. Ask, S. Burgess, and K. Åström, “Under-
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