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ABSTRACT

Hyperspectral imaging (HSI) is an emerging technique, which

allows to consistently capture images in the visible as well as

infrared light range. Many materials can be easily discrimi-

nated by means of their spectra, rendering HSI an interesting

method for the reliable classification of contents in a scene.

As the number of features for each pixel in hyperspectral im-

ages is considerably high, further processing and classifica-

tion is time consuming and stresses resources. Thus, efficient

methods to select useful bands are required. We present a

novel two-step scheme based on a clustering approach fol-

lowed by representatives selection from each cluster. The

classification results of real hyperspectral images demonstrate

that the proposed method easily outperforms common as well

as state-of-the-art methods.

Index Terms— Hyperspectral imaging, band selection,

classification

1. INTRODUCTION

Hyperspectral imaging (HSI), frequently described as imag-

ing spectroscopy, is the fusion of spectroscopy and image pro-

cessing. Thus, hyperspectral images contain the reflectance

of the visible and infrared light decomposed in tens or hun-

dreds of bands.

Objects of different materials absorb and reflect light at differ-

ent frequencies due to their molecular structure [1], resulting

in discriminative spectra or signatures. Therefore, identifi-

cation of a great diversity of materials becomes fairly easy,

rendering HSI interesting for a wide area of engineering tasks

and research. Today, HSI is often used in mineralogy, agri-

culture and surveillance [2].

As stated by the well-known curse of dimensionality, the high

number of features or bands of hyperspectral images can be

problematic for classification. The problem consists in the

fact that the feature space becomes highly sparse as the num-

ber of features increases. This makes finding suitable class

representations difficult and thus, often leads to low classi-

fication accuracies. Additionally, due to the high amount of

data, processing and evaluating hyperspectral images is time

consuming and stresses computational resources. Therefore,

a key challenge is to reduce the number of features leading to

feature or band selection.

For this purpose, several methods have been proposed to

date, such as principal component analysis (PCA), informa-

tion entropy (IE), or contrast measure (CM) [3]. Chang et al.

proposed modifications of PCA, namely maximum-variance

PCA (MVPCA) and maximum-SNR PCA (MSNRPCA) [4].

These methods have basically two disadvantages: first, they

heavily depend on suitable parameter selection and second,

data transform may lead to information loss and thus low

classification accuracy [5].

In [5], a different approach, constrained band selection

(CBS), is explained. Additionally, linearly constrained

minimum variance (LCMV) based on constrained energy

minimization (CEM) and virtual dimensionality (VD) [6] is

proposed. The key idea is to linearly constrain each band of

a signal of interest, while minimizing the band correlation

or band dependence from other bands. In [7] and [8], band

selection is performed by clustering, resulting in many cases

in higher classification accuracies. Martinez-Uso et al. [7]

cluster the bands by similarity measures such as the Kullback-

Leibler divergence, reducing the computational complexity,

while Qian et al. [8] utilize affinity propagation (AP). Addi-

tionally, Qian et al. use wavelet shrinkage to remove noisy

bands.

In this contribution we propose a novel clustering based

band-selection algorithm that groups similar bands of the hy-

perspectral image into the same cluster. Representatives are

chosen from each cluster that are finally considered for clas-

sification. This method provides high classification accuracy

while the parameters are either automatically estimated or

can be set to fixed values that show good performances with

the tested datasets.

This paper is structured as follows. In Section 2, we briefly

review the spectral clustering approach of [9], as it forms an

important step of our approach. In Section 3, we explain the

framework of the proposed band selection algorithm. Results

EUSIPCO 2013 1569744031
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of three dataset are shown in Section 4 and are compared

with common and state-of-the-art band selection algorithms.

Finally, a short conclusion is drawn in Section 5.

2. SELF TUNING SPECTRAL CLUSTERING

Many clustering algorithms such as k-means or EM cluster-

ing pose strong assumptions on the distribution of the data or

the features, which in practice do not hold and therefore lead

to poor results. A promising alternative is the graph cut algo-

rithm that has shown accurate segmentation results in image

processing [10]. It is based on finding the optimal flow in a

graph representation of the data, where the links between the

nodes represent their affinities. However, this method suffers

from the problem that the sizes of the clusters can be heavily

unbalanced. An attempt to solve this problem consists in nor-

malized cuts [11] that results however in an NP-hard problem.

A relaxation of this problem is given by spectral clustering

[12].

In the sequel, we briefly describe spectral clustering [9, 12].

Let fm ∈ RN with 1 ≤ m ≤ M denote an N -dimensional

feature or data vector that is to be clustered. The normalized

graph Laplacian L [12] is then defined as

L = D
−1/2

AD
−1/2 (1)

where A is a M ×M matrix that describes the affinities be-

tween all features. The affinity between the i-th and j-th fea-

ture is defined as aij = exp(−‖f i − f j‖/2σ
2), with σ de-

noting a scaling factor. Note that the self-affinity aii is set to

zero. The diagonal matrix D is computed by the sums over

the rows of A. The k eigenvectors corresponding to the k
largest eigenvalues of L are chosen and stacked into L̃. Fi-

nally, the transformed data points L̃ are clustered by a con-

ventional clustering method such as k-means.

The values of the kernel width or the scaling σ and the number

of final clusters K have a strong impact on the result. Perona

and Zelnik-Manor [9] present an efficient method to estimate

local scales and a suitable number of clusters. A local scale

σm,m = 1, . . . ,M can be considered as the distance between

fm and its k-th nearest neighbor where k is determined by the

dimension of the feature vector [9]. Thus, the affinity can be

reformulated as ãij = exp(−‖f i − f j‖)/(σiσj). In order to

estimate the number of clusters K , Perona and Zelnik-Manor

propose minimizing the distortion caused by clustering. For

details, we refer the reader to [13, 14, 9].

3. BAND SELECTION BASED ON SPECTRAL

CLUSTERING

We propose a band selection scheme which can be divided

into two parts: (i) cluster formation and (ii) representative

selection. In the first step, the algorithm groups similar bands

into a cluster. In the second step, most informative features

are extracted from each cluster. Afterwards, the image can

be further processed or classified using the extracted features.

An overview of this procedure is depicted in Fig. 1.

3.1. Cluster formation

Let X denote an N1 × N2 × M hyperspectral image where

N1 and N2 are the spatial dimensions and M the number of

bands. We consider each vectorized band bm ∈ RN with

1 ≤ m ≤ M and N = N1 ·N2 as a feature vector. The bands

are clustered by spectral clustering [12] as explained in Sec-

tion 2. We suggest spectral clustering by Perona et al. [9] as

this method is able to automatically estimate its parameters.

Note that basically any clustering method can be used here.

After clustering, the bands are grouped into K clusters

S(k), k = 1, . . . ,K . In the subsequent step, representations

of each cluster are selected.

3.2. Representative selection

For each of the K clusters, lower dimensional representa-

tions have to be found, i.e. a mapping d : RM(k)

→ R

M̃(k)

where M (k) is the number of bands and M̃ (k) < M (k) is

the number of reduced bands in the respective cluster. We

have tested many different mappings, e.g. contrast measure,

pooling, virtual dimensionality, and information entropy [3].

In general, PCA has shown the best performance.

Thus, PCA is applied to each cluster to obtain the repre-

sentations, i.e. we estimate the covariance matrix C
(k) ∈

R

M(k)
×M(k)

of the bands contained in each cluster S(k),

compute its eigenvalues λ
(k)
1 , λ

(k)
2 , . . . λ

(k)

M(k) , and the corre-

sponding eigenvectors v
(k)
1 ,v

(k)
2 , . . .v

(k)

M(k) . The eigenbasis

of each cluster is then given by

V
(k) =

[

v
(k)
1 , . . .v

(k)

M(k)

]

. (2)

Ideally, each cluster would be represented by the eigenvector

exhibiting the largest eigenvalue. In some cases, the estimated

number of clusters K̂ is too low meaning that the dimension

of the feature space is dramatically reduced. Thus, the dis-

crimination of the classes becomes difficult and the classifi-

cation accuracy is decreased.

For estimating how many eigenvectors should be kept in each

cluster, we define the content of a cluster C(k) as the sum over

all eigenvalues,

C(k) =

M(k)
∑

i=1

λ
(k)
i (3)

which reflects the variation of data in this cluster [3]. In or-

der to retain content, we suggest to determine the number of

kept eigenvalues M̃ (K) for each cluster by finding a minimal

M̃ (K) that fulfills

M̃(K)
∑

i=1

λ
(k)
i ≥ αC(k) (4)
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Hyperspectral Image (i) Cluster Formation (ii) Representative Selection Classification

Fig. 1: Overview of the proposed band selection approach

with 0 ≤ α ≤ 1. By stacking the eigenvectors, we finally

obtain the truncated eigenbasis

Ṽ
(k)

=
[

v
(k)
1 , . . .v

(k)

M̃(k)

]

. (5)

Note that the presented scheme allows to find the reduced

number of bands M̃ =
∑K

1 M̃ (k) automatically based on α.

3.3. Classification

During training, the clusters S(k), k = 1, . . . ,K and the ba-

sis transforms Ṽ
(k)

are learned. Using Ṽ
(k)

, the bands are

projected into a lower dimensional subspace,

x̃i,j =
[

Ṽ
(1)

. . . Ṽ
(K)

]T

xi,j (6)

where xi,j ∈ RM denotes the (i, j)-th signature of the im-

age with 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 and x̃
(k)
i,j its projection.

Finally, we obtain the band-reduced image X̃ by stacking the

coefficient vectors x̃i,j . As in pixel-wise classification, the

coefficient vectors can be classified directly. Alternatively,

spatial filtering or spatial feature extraction can easily be ap-

plied to improve the classification performance.

4. RESULTS

The proposed method (SCP) has been evaluated in terms of

classification accuracy. For this purpose, we evaluate the

overall accuracy (OA), which is the fraction of all correctly

classified samples versus all samples and the class accuracy

(CA) reflecting the number of correctly classified samples

of each class. In the following, we present results for the

Indian Pines (IP) [15], Center of Pavia (CP) [16] as well as

University of Pavia (UP) [16] datasets. The Indian Pines

image has a size of 145 × 145 pixels showing 16 classes of

mainly vegetation. After removing water absorption bands

[15], the image contains 200 bands. In contrast, the Univer-

sity of Pavia and Center of Pavia images were captured in

urban area, comprise 9 classes, and have a size of 610 × 340
and 1096×490 pixels, respectively. After removing the noisy

bands, the images contain 103 and 102 bands, respectively.

For classification, we consider the k-nearest neighbor (KNN)

[17] classifier and support vector machines (SVM) [18]. The

experiments have been repeated ten times and the training

samples have been randomly chosen. For IP, we consider in

total 660 training samples, for CP 5536 and UP 3921. During

model selection, the parameters of the classifiers have been

estimated, i.e. the number of neighbors KN for KNN and the

regularization C and the kernel bandwidth γ for SVM.

4.1. Influence of the number of bands

First, we investigate how the proposed method (SCP) is af-

fected if only few bands are considered. In order to compare

this method with recent methods, we also provide results for

affinity propagation (AP) [8], linearly constrained minimum

variance with band dependence minimization (LCMV) [5],

MVPCA [4], and all bands (All) using the same setup. As

explained in Section 3, the proposed approach is designed to

find an appropriate number of bands automatically. However,

this value can still be set manually which allows a fair com-

parison with other methods. Thus, we manually set the num-

ber of reduced bands between 5 and 50 with a step size of 5.

For the Indian Pines image, using KNN, the proposed method

performs similar as AP leading to significantly higher accu-

racies than LCMV or MVPCA (Fig. 2(a)). However, consid-

ering all bands yields the best result. This holds also for the

SVM (Fig. 2(b)). The major difference consists in the fact

that SCP outperforms even AP and is very close to the results

of considering all bands.

Since we have a lot more training samples for the Univer-

sity of Pavia dataset, we generally obtain higher classification

accuracies. For KNN, LCMV and MVPCA show the best re-

sults as depicted in Fig. 2(c). Still, SCP gives more accurate

predictions than AP. Using SVMs, SCP yields the best per-

formance in all cases (Fig. 2(d)). However, especially LCMV

and MVPCA are prone to small numbers of features.
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Fig. 2: Classification results for Indian Pines, (a) KNN and (b) SVM, and University of Pavia, (c) KNN and (d) SVM

We obtain similar results for the Center of Pavia image ex-

cept that even for low numbers of features high accuracies are

achieved. Due to space limitations the figures are not shown.

4.2. Automatic number-of-bands selection

For estimating a suitable number of bands, the content pa-

rameter α has to be set. By cross-validation, we found α =
99.99% yielding high accuracies (see Tab. 1). Note that de-

spite the high value of α, the number of bands is often sig-

nificantly reduced. For IP, we obtain 182 bands, for CP 54

and UP 50, i.e. a reduction of roughly 20-50% of the orig-

inal data is achieved. In Tab. 1, we also provide results for

the case that morphological operations (opening and closing),

denoted by SCP+M and All+M, have been applied after the

band reduction. The high accuracies show that despite reduc-

ing the number of bands, high classification accuracies can be

maintained.

5. CONCLUSION

In this contribution, we presented a novel, effective band

selection scheme for hyperspectral image evaluation. Our

approach is based on self tuning spectral clustering to group

similar bands into clusters. Then, from each cluster rep-

resentatives are chosen. For this purpose, we suggest the

use of PCA. Finally, the band-reduced image can further

be processed or classified. We have shown based on three

real datasets that our scheme outperforms common as well

as state-of-the-art methods like affinity propagation and per-

forms especially well for very low number of bands. In many

cases, even considering all bands does not result in higher

accuracies. Further processing of the band-reduced image,

such as morphological operations, can help to improve classi-

fication accuracy. Future directions will include exploitation

of spatial information within the bands.
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Table 1: Classification results of the datasets with automatically estimated number of bands

Indian Pines University of Pavia Center of Pavia

SVM KNN SVM KNN SVM KNN

OA CA OA CA OA CA OA CA OA CA OA CA

All 79.16 85.85 65.51 75.13 92.80 93.20 83.22 86.47 99.09 97.95 98.05 95.78

SCP 79.35 85.95 65.50 75.13 92.71 93.13 83.23 86.35 99.08 97.92 98.05 95.77

All+M 91.31 95.57 88.34 93.91 99.20 99.39 98.01 98.88 99.93 99.85 99.87 99.69

SCP+M 92.49 96.04 88.95 93.85 99.63 99.68 97.70 98.60 99.92 99.84 99.84 99.70
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