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ABSTRACT

Spectrum sensing is the very task upon which the entire opera-
tion of Cognitive Radio rests. In this paper, we propose a spec-
trum sensing technique based on the estimates of the spectrum
of a multiband signal obtained from its compressed samples.
We show that our proposed spectrum sensing method provides
accurate results using less data samples. We also show the effect
of false detection on the average sampling rate of a non-uniform
sub-Nyquist sampler.

Index Terms— Non-uniform sub-Nyquist sampling, Cog-
nitive radio, Spectrum sensing.

1. INTRODUCTION

The available electromagnetic radio spectrum is a precious but
limited natural resource. Moreover, the licensed part of the ra-
dio spectrum is not efficiently used, as the license cannot change
the type of use or transfer the right to other licensee. Due to this
current static licensing approach of spectrum, spectrum holes
or spectrum opportunities arise. Cognitive Radio (CR), a new
way of looking at wireless communications, has the potential to
become the solution to the spectrum under utilization problem,
by allowing unlicensed users, to access these spectrum holes for
transmission [1,2]. The first cognitive task is to develop wire-
less spectral detection and estimation techniques for sensing the
available spectrum. Spectrum sensing can be defined as the task
of detecting the presence or absence of a signal by sensing the
radio spectrum. Some popular spectrum sensing techniques are
energy detection, matched filter and cyclostationary feature de-
tection that have been proposed for narrow band sensing [3].
All these techniques function by filtering the received signal
with narrowband band-pass filters and then sample it uniformly
at the Nyquist rate. In these approaches to spectrum sensing,
the detection process boils down to a binary hypothesis-testing
problem i.e. to detect presence (Hy) or absence (Hp) of a pri-
mary user in the considered band.

As it is well known that with the advances in wireless com-
munications, future cognitive radios should be capable of scan-
ning a wideband of frequencies, in the order of few GHz. The
usual sampling of a wideband signal needs high sampling rate
ADCs, which need to operate at or above the Nyquist rate. The
above mentioned spectrum sensing techniques have their re-
spective advantages and disadvantages over one another. But a
common drawback is that they operate at Nyquist sampling rate.
Since, sampling a wideband at Nyquist rate followed by the pro-
cessing of huge amount of sampled data in real time requires a

lot of effort and poses a major implementation challenge.

To overcome this problem, solutions based on compressive
sampling have been proposed in [4-6]. In [4], the signal is
detected from the estimated spectrum obtained from the com-
pressed samples of the signal. However, spectrum estimation of
a signal from its compressed samples is achieved by solving an
optimization problem, which is not an easy task. By using the
fact that the wireless signals in open-spectrum networks are typ-
ically sparse in the frequency domain, in [6], a sensing method
based on MUSIC algorithm has been proposed. This sensing
method is of particular interest as it is implemented for a sub-
Nyquist sampling technique known as the Multi-Coset (MC)
sampling. Authors in [6] claim that the proposed method would
bring substantial saving in terms of the sampling rate. However,
the performance of the proposed method degrades at low SNRs
and also requires more data samples to correctly detect the sig-
nal. An improved version of [6] is presented in [7], which works
well at low SNRs but at the cost of high complexity.

In this paper, based on the sparsity of the multiband signals
in frequency domain and using non-uniform sub-Nyquist sam-
pling of the input signal, we propose a wideband spectrum sens-
ing method for the detection of active bands that would bring
substantial saving in terms of the sampling rate. The perfor-
mance of the proposed method is examined at low SNR values
with less data samples and is found to produce accurate results.
In the next section the system model is presented and in Section
3 the non-uniform spectrum sensing method is presented and
the functionality of each block in the model is explained. Sim-
ulation results are shown in Section 4 and finally conclusion is
drawn in Section 5.

2. SYSTEM MODEL OF NON-UNIFORM SAMPLER

One of the main objectives of Software Radio (SR) is to propose
new technologies to design wireless infrastructure able to sup-
port multi-service, hardware-independent operations [2]. Fur-
thermore, CR continues to gain popularity as it adapts intelli-
gently to the radio environment by dynamically managing the
spectrum and, therefore, results in a spectrum which changes
continuously [2]. Keeping the aspects of SR and CR in mind,
we have proposed a sampling system, that adapts to the changes
in the input signal spectrum and is not constrained by the in-
flexibility of hardwired circuitry. We call it the Dynamic Single
Branch Non-Uniform Sampler (DSB-NUS) or simply the DSB
sampler [8], see Fig. 1. DSB sampler is based on the principle
of MC sampling except that instead of p input branches in case



of MC sampling, the DSB sampler has only one input branch.
Furthermore, in the DSB sampler, an adaptation loop is intro-
duced which dynamically measures the spectral support of the
input signal from time to time, to adapt the sampling rate ac-
cording to the spectrum of the input signal i.e. reducing the
sampling rate if the signal sparsity in frequency domain is high
and vice versa. The traditional MC sampling lacks this adaptive,
feed-back mechanism and is rather a static, hardwired system.
In this paper, we focus on the spectrum sensing method used in
the DSB sampler. Since, the working of the DSB sampler is not
the subject of this paper, here we give an overview of the system
before presenting our non-uniform spectrum sensing method.
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Fig. 1. Dynamic Single Branch Non-Uniform Sampler system.

In DSB sampler, the Non-Uniform Sampler Block (NUSB)
performs the non-uniform sub-Nyquist sampling of the input
signal z(t). In random sampling, the set of sampling instants
{tn}nez should be different from the set of uniform sampling
instants {nT'} for an average sample period T and n € Z. The
digital signal obtained is given by
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zs(t) = Y @(ta)d(t - tn) M
where signal x(t) is from the class of continuous real-valued
signals with finite energy and band-limited to a subset B =
[—%, f”—;q] Let F represent the spectral support of the sig-
nal such that 7 C B and let Ng be the number of bands in the
multiband signal. The NUSB of the DSB sampler is designed as
an Adaptive Pseudo Random Sampler (APRS) [9,10]. In APRS,
the N sampling instants are defined as:

m
tm = tm—1 +am=t0+zai ()
i=1
where 1 < m < N, Elt,,] = mT and var|t,,] = mo>V N >
1. Note that {c,, } is a set of i.i.d random variables with prob-
ability density p; (7), mean T" and with variance o2, Although,
the input components in DSB sampler have changed compared
to the traditional MC sampler but the signal at the output of the
NUSB remains the same as in the case of MC sampling [11]. As
aresult, for each L uniformly spaced samples in case of Nyquist
sampling, we get p non-uniform samples, see Fig.2. The set
T = {r}"~, is composed of the durations between adjacent p
samples where 7; = ¢; 41 —¢;fori #0andi#p— 1,70 =1
and 7,1 = (L + ¢cp) — ¢p_1, see Fig. 2. The set C = {¢;}F—,
contains p distinct integers from £ = {0,1, ..., L — 1}. Now (2)
can be written as
m—1
tm=to+T »_ 7

=0
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® DSB samples O Nyquist samples

VVVVVVVV T AT B RT ... TRT S
to ti ty t3 ta tp2 tp-1

Fig. 2. L uniformly spaced Nyquist samples and corresponding p
DSB samples.

The set of sampling instants {t, } ez is non-uniform and peri-
odic with period L such that ¢, = tq + LT. The DSB sampler
adapts its sampling rate according to the sparsity of the spec-
trum of input signal. Because of this dynamic nature, it needs to
calculate and update the parameters 7 and C from time to time
to adjust the sampling rate at NUSB. The DSB sampler uses MC
reconstruction to reconstruct the input signal. Depending on the
application, the reconstruction process in DSB sampler starts
by dividing the entire frequency band into L narrowband cells,
each of them with bandwidth B, such that fx,, = L x B [11].
These cells are indexed from 0 to L — 1, see Fig. 3. Those spec-
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Fig. 3. Division of the observation band into L = 20 cells where
K=US 1{k;} = {k,}}2, are the indexes of the active cell.

tral cells which contain part of the signal spectrum are called
active cells. The indexes of the active cells are collected into a
set K = Uf\fl {k;} = {kr}_,, called the active cells set. Note
that ¢ = | K| where | x| is the cardinality operator. It can be seen
from Fig.3 that the total number of bands in the multiband sig-
nalis N = 6 and the set of active cells indexes is K = {{k, }U
{kQ}U...U{ke}} = {{kl, kg} U {k‘3, k’4} U...uU {ku, k‘lz}} =
{k1,ks,...,k12} and ¢ = 12. To perform reconstruction, the
number of bands Ng and K must be known to the MC recon-
struction block [11]. These parameters are indispensable to re-
construct the signal but are unknown to the system. Moreover,
these parameters are used by the Optimal Average Sampling
Rate Block (OASRB) (Fig.1), to update the sets C and 7 which
are sent to NUSB, to adapt the sampling rate to the spectrum of
input signal, as stated earlier in this section. The DSB sampler
basically operates in two phases i.e. the reconstruction phase
(switch in position 1) and the adaptation phase (switch in posi-
tion 2), see Fig. 1. Each time the DSB sampler starts, the switch
is in position 2 as the system needs to calculate the parameters
C,T for the OASRB and Ng, K, C for the MC reconstruction



so that it can start sampling according to the spectral content
of the signal and can perform reconstruction, respectively. It is
the job of the Non-Uniform Spectrum Sensing Block (NUSSB)
(shown in bold and shaded in Fig. 1) to compute the parameters
Np and K from which the parameters C and 7 are computed.
Therefore, the NUSSB plays an important role in the operation
of DSB sampler.

3. NON-UNIFORM SPECTRUM SENSING BLOCK

Based on the discussion in the previous section, we can re-
state the task of the NUSSB as: Given the observation band,
B = [—%, fN—qu] the objective is to estimate the active
cells set K for optimal reconstruction of the non-uniformly sub-
Nyquist sampled signal z(t). In this section, we present our
non-uniform spectrum sensing model. The block diagram of
the model is presented in Fig. 4 and the function of each sub

block is explained in the next subsections.
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Fig. 4. Non-uniform spectrum sensing model

3.1. Non-uniform spectrum estimation block

As stated earlier, the N and the set K are unknown to the DSB
sampler. To find K, two interesting approaches based on MC
sampling have been proposed in [6,7]. However, the MUSIC
algorithm based method in [6] shows poor performance at low
SNRs and requires more data samples to produce satisfactory
results. Authors in [7] proposed an improved version of [6]
but it is more complex. Furthermore, the signal z(¢) is under
sampled and the samples are not evenly spaced, the usual spec-
trum sensing techniques like energy detection, cyclostationar-
ity cannot be used [3]. In order to overcome this hurdle, we
treat this scenario as a missing data problem and, in this pa-
per, we propose to use the Lomb-Scargle method [12] to es-
timate the power spectral density (PSD) of the non-uniformly
sampled signal. Then in the remaining sub blocks of the sens-
ing model, Np and K are computed from the estimated PSD.
The Lomb-Scargle periodogram is a well known tool to detect
if an unevenly spaced data is due to noise or it contains also the
contribution of a signal by providing an estimate of the PSD.
Lomb-Scargle method evaluates the samples, only at times ¢,
that are actually measured. Suppose that there are N, samples
z(tn), n = 1,..., Ns. The PSD estimate obtained from Lomb-
Scargle method is defined by (4) (spectral power as a function of

angular frequency w = 27 f > Owith f € B = [—%, f”—;q])

x(tn)—T) cos w(t, —0 2
PSDest = 2% [zn (2(:71 losz)w(tn—(é) )] +

4
[, (@(tn)—7) sinw(t, —6)]” @)
>, sin?w(t,, —9)

where 7 and o2 represent the mean and variance of the samples.
More detail on Lomb-Scargle method can be found in [12].

3.2. Moving average filter block

It is noted that the PSD estimate obtained from the Lomb-
Scargle method has a high variance. As a result of which Np
and /C are not easy to detect if the PSD estimates are used in
their original form. Therefore, we use a moving average filter to
smoothen the PSD,; obtained from the non-uniform sampled
data. The moving average filter smooths the incoming PS D,
by replacing each data point with the average of the neigh-
boring data points defined within a specified span. In Fig.4,
PSDgpmootn is the smoothed value of the PSD at frequency f.
Smoothing is done over a span of 2M + 1 is the span where
M is the number of neighboring data points on either side of
PSDgpmootn- Although this process is simple in operation, but
we will show later that the results obtained are quite accurate.

3.3. Support Detector Block

Once a smooth PSD estimate has been obtained, the spectral
support F is computed with reference to a threshold value, 7.
7 is selected dynamically as a function of PSD,, 4, i.e. n =
| PSD,nas — B, where (3 is a fixed value and |*| is the floor
function. With reference to the threshold 7, the number of bands

= J<-
S
5
>~
=~
S

.
o

k k
—_ —
k, k,

[BESY N
e
1

J=

by B

M7

'y
[
@
15,
il
£

by

PSDsmootn  [dB]

AT L

Fig. 5. Support detection using threshold in non-uniform spec-
trum sensing block.
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Np are computed. The process is illustrated in Fig.5 for a sig-
nal with N = 4. The spectral support is calculated using the
following equation

F=U " a0 ®)

where a; and b; represent the crossing points at the threshold
7, see Fig.5. Once the support F is found, the set /C, can be
calculated using (5) as follows

|a:LT) < {k;} < [bLT] 6)

where 1 < i < Npand T = 1/fny,. When all the k; sets
are calculated for each band, the set of spectral indexes K is
computed as

K=" ki = (R Y ™

The set K, then, is sent to the OASRSB and MC reconstruction
blocks, as shown in Fig.1.



4. NUMERICAL RESULTS

In this section, we present some numerical results for our
proposed non-uniform spectrum sensing block (NUSSB).
For simulations, the wideband of interest is in the range of
B=[-300,300]MHz, therefore, the Nyquist sampling rate is
fNyq=600MHz. We consider a multiband signal with Np=6
bands, each with a maximum bandwidth of 10MHz. Therefore,
the input signal is sparse in the frequency domain. For sim-
plicity we assume that the Np bands have the same amplitude.
16 QAM modulation symbols are used that are corrupted by
the additive white Gaussian noise. Given f,,,, = 300MHz,
it is desired to detect Np and K for the input signal which is
sampled at a sub-Nyquist sampling rate using the DSB sampler.
For the NUSSB, £ is set equal to 5dB. Note that « is the ratio of
the number of non-uniform samples given to NUSSB (for esti-
mating the spectral support) to the number of uniform samples
obtained at Nyquist rate. Based on the parameters estimated by
NUSSB i.e. Ng, K in the adaptation phase, the DSB sampler
selects the p non-uniform samples, corresponding to L uniform
Nyquist samples, to operate in the reconstruction phase, see
Fig.2. As the average sampling rate for the DSB sampler is
favg = (/L) fnyq. it can be seen that a false detection of Ng,
K by NUSSB will directly effect the f,,4 of the DSB sampler,
as will be shown shortly.

The detection performance is evaluated by computing the
probability of detecting the signal occupancy in terms of the
number of bands Nz and the active cells set /C as follows:

Py, = Pr (1\73 - NB)

. (®)
Pd(IC) =Pr <’C = ]C)
and the false alarm probability is computed as
-Pfa(NB) =Pr (NB > NB)
©))

Praixy = Pr (IK] > KI| £ € K)

where |/C| represents the cardinality of K. The subscripts Np
and /C are used to distinguish the probabilities for the number of
bands and the active cells set, respectively. We present both the
Pyny) and Pyxy, as the correct detection of the active cells set
is linked to the correct detection of Np, see equations (5),(6),
(7). In order to compute P; and Py,, we have performed 1000
iterations at various values of SNR and for different number of
samples given to the NUSSB i.e. different a. It should be noted
that results in Figs.(6-9) are plotted when the DSB sampler is
operating in adaptation phase (switch in position 2, see Fig.1),
to explicitly show the performance of the NUSSB.

In Fig.6, Py(ny) and Pyx) are plotted against varying SNR
for « = 0.4,0.5. It can be seen here that for a=0.4, after
SNR=5dB, our proposed sensing method is able to detect the
total bands and the occupied cells with high probability. At
a=0.5, the performance has further increased and we are able to
detect with high probability at an SNR=2dB. Fig.6 shows that
the performance of the proposed sensing model depends on the
number of non-uniform samples available to NUSSB. To show
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Fig. 6. P;,(y,) and Py, (k) plotted against varying SNR for o = 0.4
and a = 0.5.
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Fig. 7. Py(v ), Pax) plotted against varying « for different SNR.

this dependency, we have plotted Py ) and Py for varying
values of o in Fig.7. It can be seen that the proposed sensing
model behaves rather poorly at a=0.3 but its performance im-
proves at =0.4. At a=0.5, our proposed sensing model detects
with high probability, approaching 1 after « =0.6.

Next in Fig.8, we plot the Py, () and Ppqxy as a function
of varying SNR. At low SNR i.e. -1 dB, the values for Py4(np)
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Fig. 8. P;o(n,) and Py, (k) plotted against varying SNR for o = 0.4
and o = 0.5.
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and Py, (k) are quite high, especially for a=0.4. But as the SNR
increases, the Py, (nvy) and Py, (k) drop quickly, practically be-
coming zero at an SNR=3dB for a=0.5. As suspected, Pyq(np)
and Py, (k) also depend on the number of non-uniform samples
available to NUSSB for detection. To show this, in Fig.9, we
have plotted Py, (n,) and Py, for varying values of « at dif-
ferent SNR values. It can be seen that the performance of the
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sensing model improves with increasing cv.

As stated earlier, the probability of false alarm effects the
averaging sampling rate f,,4 of the DSB sampler. This happens
because at a high P;,, the NUSSB shows that the estimated
spectral support F of the signal is larger than the actual support,
as a result, the DSB sampler is forced to sample at a higher, un-
optimized sampling rate. It should be noted that the results in
Figs.10-11, show the impact of false detection ( Py, ), performed
in the adaptation phase, on the average sampling rate achieved
in the reconstruction phase. To show this, in Fig.10, we have
plotted average sampling rate f(wg, achieved by DSB sampler
based on the information received from NUSSB, against dif-
ferent values of a. In Fig.10, fqug—opt. represents the optimal
average sampling rate of DSB sampler when operating in non-
blind mode i.e. having full information of the spectral support.
When the DSB sampler operates in blind mode, fm.g= fNyq 1ep-
resents the worst case and the ideal case is when f(wy=f avg—opt-
The objective is that the difference A fo,0=(favg—opt — fm,g)
must be zero. Fig.10 shows that for a given SNR, the fm,g ap-

. . .
f
N
s

B00- = = t
~ 5004 L
F< .
s f.,, at SNR=—1dB
> Vo
2 »
& 400, at SNR=5dB r
g
fre
£ 300 "
g f,y al SNR=1008
(%}

2001 t

/
100+ f r
avg-opt
03 035 04 045 05

Fig. 10. Estimated average sampling rate f,,, of DSB sampler while
operating in blind mode plotted against a.

proaches fo,g—opt as o increases, which is normal, because for
a given SNR, the Py, of the NUSSB decreases with increase
in . This becomes more clear from Fig.11 where Af,,, is
plotted against Py,(ny) for a= 0.5. It can be seen that with
increase in Ppq () A fqug increases and approaches the max-
imum A f,,4 at Pgo(n,)=1. Note that here the maximum value
for Afavg=fnyq — favg—opt = 600-145 =~ 455MHz. At low
Pjo(ng) the proposed non-uniform spectrum sensing method
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Fig. 11. A fa.g is plotted against Pyo(np) for a=0.5.
works fine and the difference A f,4 is close to zero.

5. CONCLUSION

In this paper, we have proposed a spectrum sensing technique
based on non-uniform sub-Nyquist sampling. We have shown
that the proposed sensing model works efficiently and shows
high detection and low false alarm probabilities.The perfor-
mance of the spectrum sensing model improves with increase
in number of the non-uniform samples available to the sensing
method. Finally, the effect of false detection is shown on the
average sampling rate of the sampler.
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