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ABSTRACT

In this paper we present a dynamic classification scheme
involving Single-hidden Layer Feedforward Neural (SLFN)
network-based non-linear data mapping and test sample-
specific labeled data selection in multiple levels. The number
of levels is dynamically determined by the test sample under
consideration, while the use of Extreme Learning Machine
(ELM) algorithm for SLFN network training leads to fast
operation. The proposed dynamic classification scheme has
been applied to human action recognition by employing the
Bag of Visual Words (BoVW)-based action video representa-
tion providing enhanced classification performance compared
to the static classification approach.

Index Terms— Dynamic classification, Data selection,
Feedforward Neural network, Extreme Learning Machine

1. INTRODUCTION

Classification methods can be categorized depending on the
way they utilize the available labeled data in static and dy-
namic methods. Static classification methods employ all the
available labeled data and the corresponding class labels in
order to train a classifier that will be used in order to classify
any (unknown) test sample. Dynamic classification methods
involve a model adaptation process based either on the train-
ing set structure, or on the test sample to be classified.

By exploiting the information provided by the test sam-
ple under consideration, it has been shown that dynamic
classification schemes can provide enhanced classification
performance, compared to the static ones. A dynamic clas-
sification scheme exploiting sparsity constraints has been
proposed in [1]. A given test sample is involved in a L1-
minimization-based class-independent regression process by
using an overcomplete dictionary formed by all the available
labeled data. Multiple reconstruction samples are, subse-
quently, produced by exploiting the reconstruction weights
corresponding to each class independently and the test sam-
ple under consideration is classified based on the minimum
reconstruction error classification rule. The Dynamic Com-
mittee Machine (DCM) has been proposed in [2]. DCM
employs five state-of-the-art classifiers in order to determine

five classification results for a given test sample. The ob-
tained classification results are, finally, fused by using test
sample-specific combination weights. A dynamic classifi-
cation scheme has been proposed in [3] for human action
recognition. The classification process involved person iden-
tification and action classification based on a classifier trained
by using labeled samples belonging the recognized person. A
dynamic classification scheme involving training data clus-
tering and Linear Discriminant Analysis (LDA)-based data
projection in multiple levels is proposed in [4]. The proce-
dure used in order to determine an appropriate training set for
LDA-based data projection and classification is intuitive and
effective. However, the LDA-based classification approach in
this setting sets the assumption of linearly separable classes,
which is not met in several classification problems where
non-linear classification models are more appropriate. In or-
der to overcome this assumption, a non-linear data mapping
process has been employed in [5].

In this paper we present a dynamic classification scheme
consisting of two iteratively repeated processing steps. In the
first step, a non-linear mapping process for both the training
data and the test sample under consideration is determined by
training a Single-hidden Layer Feedforward Neural (SLFN)
network. In the second step, test sample-specific training
data selection is performed by exploiting the obtained net-
work outputs corresponding to both the training data and test
sample under consideration. SLFN-based data mapping and
training data selection are performed in multiple levels, which
are determined by the test-sample under consideration. At
each level, by exploiting only the more similar to the test sam-
ple training data, the proposed dynamic classification scheme
focuses the classification problem on the classes that should
be able to discriminate. The adopted labeled data selection
process is intuitive and effective, while the use of the Extreme
Learning Machine (ELM) algorithm [6] for SLFN network
training results to fast network training, leading to fast and
effective dynamic classification.

The paper is structured as follows. Section 2 describes
the proposed dynamic classification scheme. Section 3 illus-
trates experimental results conducted in order to evaluate its
performance. Finally, conclusions are drawn in Section 4.
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Fig. 1. The proposed dynamic classification scheme.

2. PROPOSED METHOD

The proposed dynamic classification scheme consists of two
processing steps. The first one involves non-linear data map-
ping to a new feature space determined by the outputs of an
SLFN network. The second step performs test sample-based
training data selection. These two steps are performed mul-
tiple times (levels) in order to determine the class label of a
given test sample. The procedure followed by the proposed
dynamic classification method is illustrated in Figure 1. In
the following, we describe the two above mentioned process-
ing steps and the proposed dynamic classification method.

2.1. SLFN-based Data Mapping

Let Z = {zi}|Z|
i=1 be a vector set formed by the |Z| training

(labeled) vectors. We employ Z in order to determine a new
feature space resulted by a non-linear mapping process de-
termined by training an SLFN network. The SLFN network
consists of N input (equal to the dimensionality of zi), Q hid-
den and C output (equal to the number of classes appearing in
Z) neurons. The network target vectors ti, i = 1, . . . , |Z| are
set to tij = 1 for vectors belonging to class j and tij = −1
otherwise.

In order to achieve fast operation, we employ the ELM al-
gorithm for SLFN network training [6]. In ELM, the network
input weights Win ∈ RN×Q and bias values b ∈ RQ are
randomly chosen, while the output weights Wout ∈ RQ×C

are analytically calculated. By storing the hidden layer neu-
rons outputs gij , i = 1, . . . , |Ẑ|, j = 1, . . . , Q in a matrix G,
i.e.,:

G =

 G(w1, b1, ẑ1) · · · G(w1, b1, ẑ|Ẑ|)

· · ·
. . . · · ·

G(wQ, bQ, ẑ1) · · · G(wQ, bQ, ẑ|Ẑ|)

 , (1)

and using linear activation function for the network output
layer, the network’s output vector corresponding to training
vector zi is given by oi = WT

outgi, where gi is the i-th col-
umn of G and denotes the network hidden layer output for
zi. In (1), wj , bj denote the j-th column of Win and the j-th
element of b. The network’s outputs corresponding to all the

labeled vectors forming Z can be written in a matrix form as
O = WT

outG. Finally, by assuming that the network output
vectors oi are equal to the network target vectors ti, Wout

can be calculated by:

Wout =
(
GGT

)−1
GTT , (2)

where T[t1 . . . t|Z| is a matrix containing the network target
vectors.

By observing (2) it can be seen that this equation can be
used for Wout calculation only in the cases where the matrix
Ĝ = GGT is non-singular, i.e., in the cases where |Ẑ| > Q.
However, considering the fact that after performing multiple
data selections for a level l > 1 the cardinality of Ẑ will
be very small compared to the dimensionality of the network
hidden layer output vectors, we employ a regularized version
of (2) proposed in [7], i.e.:

Wout = G

(
GTG+

1

c
I

)−1

TT . (3)

The value of regularization parameter c is determined by fol-
lowing a grid search strategy, as it will be described in the
experimental section. By using (3), the network output vector
corresponding to zi is obtained by:

oi = WT
out gi = T

(
Ω+

1

c
I

)−1

Ki, (4)

where Ki = GTgi, Ω = GTG are the kernel matrices cor-
responding to zi and the entire training set, respectively [7].
We employ (4) in all our experiments, since in this case the
dimensionality of the network hidden layer is inherently de-
termined by exploiting the kernel trick [8] and needs not to be
provided by the user.

After training the SLFN network, the training vectors zi
are introduced to the network in order to determine the vec-
tor set O = {oi}|Z|

i=1, where oi is the network output for zi.
The test sample ztest is, also, introduced to the trained SLFN
network in order to obtain its response otest.

2.2. Dynamic Data Selection

Let O = {oi}|Z|
i=1 and otest denote the network outputs for

the training vectors zi, i = 1, . . . , |Z| and the test sample

2
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under consideration ztest, respectively. In order to determine
the training vectors that provide the M most similar to the
test sample ztest network outputs, we calculate the Euclidean
distances between otest and oi:

di = ∥oi − otest∥. (5)

The obtained distances di, k = 1, ..., |Z| are sorted in an
ascending order and the training vectors that provide the M
most similar to the test sample ztest network outputs are those
providing the M smallest distance values. In our experiments
M is automatically determined by using M = m|Z|, where
m < 1.

Alternatively, one may cluster the network output vectors
oi in K groups, e.g., by applying K-Means algorithm, and
select the training vectors belonging to the group where otest

belongs to, similar to [4, 5]. This approach has the advan-
tage that the number of selected training data M is dynami-
cally determined by the test vector under consideration. How-
ever, clustering O is computationally demanding compared to
the adopted approach. Furthermore, in the cases where the
test sample network output vector otest is far from the corre-
sponding group center, clustering would not result to optimal
training data selection for classification.

2.3. Dynamic Classification Scheme

Let X = {xi}|X |
i=1 be a vector set containing training vectors

xi ∈ RN which are followed by class labels ci appearing in a
class label set C. Let xtest ∈ RN be a vector representing the
test sample under consideration. X is used in order to train a
SLFN network by following the procedure described in sub-
section 2.1. After training the SLFN network, both X̃1 and
xtest are introduced to the trained network in order to obtain
O1 and otest,1, respectively. Here, we have introduced an in-
dex denoting the level of the proposed dynamic classification
scheme. After obtaining O1 and otest,1, the training vectors
that provide the M most similar to the test sample network
outputs are determined by following the procedure described
in subsection 2.2. These vectors are selected in order to form
the algorithm’s second level training data set X2.

In the general case, after obtaining the l-th SLFN network
outputs Ol and otest,l, the l-th level training vectors provid-
ing the M = m|Xl| most similar to the test sample network
outputs are determined by following the procedure described
in subsection 2.2. The obtained vectors are used to form the
l+1-th level training set X̃l+1, which is used in order to train
an SLFN network by following the procedure described in
subsection 2.1.

The above described process is performed for multiple
levels L until the labeled vectors forming the SLFN network
training set belong to one class only. That is, the number of
mapping levels L depends on the test sample under consider-
ation. In the cases where the classification problem involves
well distinguished classes we expect the number of mapping

levels L to be low. In the cases of overlapping classes mul-
tiple mapping levels will be performed in order to obtain the
final classification result.

3. EXPERIMENTS

We have applied the proposed dynamic classification scheme
on three publicly available human action recognition databases.
A brief description of the adopted databases and the experi-
mental protocols adopted in each case are given in subsection
3.1. We have employed Harris3D Space Time Interest Point
(STIP) detector [9] in order to determine STIP locations on
action videos. Histogram of Oriented Gradient (HOG) and
Histogram of Optical Flow (HOF) descriptors [10] have been
calculated on STIP action video locations and have been
concatenated in order to provide the obtained descriptor.
HOG/HOF descriptors have been normalized to have unit
L2 norm. The obtained normalized HOG/HOF descriptors
have been employed in order to represent action videos by
following the Bag of Visual Words (BoVW)-based approach.
In our experiments, codebooks are constructed by applying
K-Means clustering. We set the number of codebook vec-
tors equal to N = 4000, since this value has been shown to
empirically give good results for a wide range of datasets.
To limit complexity, we cluster a subset of 105 randomly
selected HOG/HOF vectors. To increase precision, we initial-
ize K-Means 8 times and keep the codebook providing the
lowest intra-cluster variance. HOG/HOF vectors are assigned
to the closest codebook vector using Euclidean distance. The
resulting histograms of HOG/HOF occurrences are used in
order to represent action videos.

For SLFN network training, we use (4) and χ2 kernel:

K(zi, zj) = exp

(
− 1

D

N∑
n=1

(zin − zjn)
2

2(zin + zjn)

)
, (6)

where D is the mean value of distances between all train-
ing data zi. The training data selection parameter m and the
optimal ELM regularization parameter value have been de-
termined by following a grid search strategy using the values
m = 0.1µ, µ = 1, . . . , 5 and c = 2r, r = −20, . . . , 20.

3.1. Adopted Action Databases

3.1.1. KTH action database

The KTH action database consists of 600 action videos de-
picting 25 persons, each performing six actions [11]. The
actions appearing in the database are: ’walking’, ’jogging’,
’running’, ’boxing’, ’hand waving’ and ’hand clapping’. Four
different scenarios have been recorded: outdoors (s1), out-
doors with scale variation (s2), outdoors with different clothes
(s3) and indoors (s4), as illustrated Figure 2. The persons are
free to change motion speed and direction between different
action realizations. The most widely adopted experimental
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Fig. 2. Video frames of the KTH action database for the four
different scenarios.

Fig. 3. Video frames of the UCF sports action database.

setting on this data set is based on a split (16 training and 9
test persons) that has been used in [11].

3.1.2. UCF sports action database

The UCF sports action database consists of 150 action videos
depicting actions collected from ten sports which are typically
featured on broadcast television channels, such as the BBC
and ESPN [12]. The actions appearing in the database are:
’diving’, ’golf swinging’, ’kicking’, ’lifting’, ’horse riding’,
’running’, ’skating’, ’bench swinging’, ’swinging’ and ’walk-
ing’. The videos were obtained from a wide range of stock
footage websites including BBC Motion gallery and Getty-
Images. The collection represents a natural pool of actions
featured in a wide range of scenes and viewpoints. The Leave-
One-Video-Out cross-validation procedure is used by most
action recognition methods evaluating their performance on
this data set. Example video frames are illustrated in Figure
3.

3.1.3. Hollywood2 action database

The Hollywood2 action database consists of 1707 action
videos depicting actions collected from 69 different Holly-
wood movies [10]. The actions appearing in the database
are: ’answering the phone’, ’driving car’, ’eating’, ’fighting’,
’getting out of the car’, ’hand shaking’, ’hugging’, ’kissing’,
’running’, ’sitting down’, ’sitting up’ and ’standing up’. The
most widely adopted experimental setting on this data set
is based on a split (823 training and 884 test action videos)

Fig. 4. Video frames of the Hollywood2 action database.

that is provided by the database. Example video frames are
illustrated in Figure 4.

3.2. Experimental Results

Table 1 illustrates the classification rates obtained by applying
the proposed dynamic classification scheme on all the three
databases. In this table we, also, provide the action classifica-
tion rates obtained by applying action classification following
the static classification approach, i.e., by applying only the
first level of the proposed dynamic classification scheme, re-
ferred to as Static ELM. As can be seen, the adoption of a
dynamic classification approach enhances the action classi-
fication performance in all the three cases, providing up to
3.7% improvement on the obtained action classification rate.

Table 1. Comparison results on the KTH, UCF sports and
Hollywood2 databases for the static and dynamic classifica-
tion schemes.

Method KTH UCF sports Hollywood2
Static ELM 88.89% 78% 47.38%
Proposed Scheme 92.59% 80.66% 50.11%

For comparison reasons, we have implemented the dy-
namic classification schemes proposed in [4, 5, 1] and applied
them to the three action databases employing the adopted ac-
tion video representation. Comparison results between the
four dynamic classification schemes are provided in Table
2. Finally, we provide comparison results between the pro-
posed dynamic classification scheme for human action recog-
nition and other methods proposed in the literature employing
Harris3D STIP detector and HOG/HOF-based action video
representation in Table 3. As can be seen in these Tables, the
proposed dynamic classification scheme clearly outperforms
all the competing dynamic and static classification schemes
in all the three databases.
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Table 2. Comparison results on the KTH, UCF sports and
Hollywood2 databases for different dynamic classification
schemes.

Method KTH UCF sports Hollywood2
Method [4] 90.74.% 78.66% 47.51%
Method [5] 92.13% 79.33% 47.62%
Method [1] 91.66% 79.33% 48.75%

Proposed Scheme 92.59% 80.66% 50.11%

Table 3. Comparison results on the KTH, UCF sports
and Hollywood2 databases for methods employing Harris3D
STIP detector and HOG/HOF-based action video representa-
tion.

Method KTH UCF sports Hollywood2
Method [10] − − 32.4%
Method [13] 91.8% 78.1% 47.6%

Proposed Scheme 92.59% 80.66% 50.11%

4. CONCLUSION

In this paper we presented a dynamic classification scheme
involving two iteratively repeated processing steps. The first
one determines a non-linear data mapping to a feature space
determined by the outputs of a SLFN network trained by
using training (labeled) data. The second one, performs test
sample-specific training data selection for optimal SLFN net-
work training. The method has been tested on three publicly
available action recognition databases providing enhanced
classification performance compared to the static classifica-
tion approach.
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