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ABSTRACT

The outlier production mechanism of maximum likelihood
direction-of-arrival estimators is investigated. The objective
is to provide an accurate description of the probability of res-
olution for both conditional and unconditional maximum like-
lihood methods in the small sample size regime. To that ef-
fect, the asymptotic behavior of these two cost functions is
analyzed assuming that both the number of antennas and the
number of available snapshots increase without bound at the
same rate, so that both quantities are comparable in magni-
tude. The finite dimensional distributions of both conditional
and unconditional cost functions are shown to be Gaussian in
this asymptotic regime, and a closed form expression of the
corresponding asymptotic covariance matrices is provided.

Index Terms— Conditional ML, Unconditional ML,
DoA estimation, random matrix theory, central limit theorem.

1. INTRODUCTION

Among all direction of arrival (DoA) estimation techniques,
Maximum Likelihood (ML) methods offer the highest advan-
tage in terms of both precision and spatial resolution. Unfor-
tunately, ML algorithms typically require high dimensional
search techniques that cause a significant increase in the re-
quired computational complexity, especially when compared
to other simpler algorithms based on one-dimensional search
(such as subspace-based approaches). Still, ML methods con-
tinue to be the most attractive solution in applications based
on offline processing or in architectural solutions where com-
putational resources are not scarce.
Let y() denote an × 1 complex vector containing the

samples received by the antenna array at the th sampling
instant, where  = 1     and  denotes the number of
available snapshots. For simplicity, we will consider here the
case where    , i.e. the sample size is higher than the
observation dimension. Assume that the array is receiving
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2009 SGR 1046 and TEC2011-29006-C03-01, as well as the French Program
ANR-07 MDCO-012-01 "SESAME".

the signals transmitted by  sources from angles of arrival

̄ =
£
̄(1)     ̄()

¤
, so that we can model y() as

y() = A(̄)s() + n()

where s() contains the source signals at the th sampling
instant, A(̄) is a  × matrix containing as columns the
steering vectors associated with the true DoAs of the  

sources, and n() are noise samples, which will be assumed
to be independent and identically distributed (i.i.d.) Gaussian
circularly symmetric random variables with zero mean and
variance 2.
Traditionally, two different ML methods for DoA estima-

tion have coexisted in the literature, each one derived from
a different modelling assumption regarding the nature of
the source signals s(): the “conditional” (or deterministic)
model, which assumes that the received signals are deter-
ministic unknowns, and the “unconditional” (or stochastic)
model, which assumes that the source signals are random
variables [1]. In this last case, the column vectors s() are
typically assumed to be i.i.d. in the time domain, following
a circularly symmetric Gaussian distribution with zero mean
and covariance P = E

£
s()s()

¤
. For each of these two

models, one can derive a different Maximum Likelihood es-
timator. From now on, these two methods will be referred to
as conditional ML (CML) and unconditional ML (UML) es-
timators, respectively. In both cases, the estimated angles are
determined as ̂ = argmin∈Θ ̂ () whereΘ is a domain for
whichA() has full column rank and where ̂ () is a certain
random function that depends on the ML method. More spe
cifically, this random function can be written as

̂ () =
1


tr
h
P⊥()R̂

i
(1)

for the CML method and

̂ () =
1


log det

h
̂ ()P

⊥
() +P()R̂P()

i
(2)

for the UML method [2, 3], where we have defined the or-
thogonal projection matrices

P() = A()
¡
A()A()

¢−1
A()
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and P⊥() = I − P(), and where R̂ is the sample co-
variance matrix, i.e. R̂ = 1



P
=1 y()y

().
In [1], Stoica and Nehorai provided a comparative study

of the performance of the above two methods in the large
sample size regime, showing that UML asymptotically out-
performs CML as  →∞. However, these conclusions only
hold for very large in comparison with , and do not carry
over to the more practical situation where are compara-
ble in magnitude. It should be pointed out that it is precisely
in this regime that the so-called breakdown effect (character-
ized by the systematic presence of outliers in the DoA esti-
mates) can be effectively observed. Furthermore, it is indeed
in this “threshold region” that ML methods become an inter-
esting alternative to one-dimensional search approaches (such
as subspace based techniques), since when  À all these
methods perform very similarly.
Unfortunately, the behavior of theseML approaches in the

regime where are comparable in magnitude is still not
fully understood, mainly due to the complicated dependence
of ̂ () on the observations. Some interesting studies
along these lines can be found in [4], where the outlier prob-
ability of the CML and an alternative UML method was stud-
ied for finite  ; in [8], where the large signal to noise
ratio situation is analyzed; or in [5], where the threshold ef-
fect is studied in terms of the eigenstructure of the asymptotic
covariance matrix. It must be mentioned that [4] does not
really analyze the UML method in (2) but a more manage-
able version based on the unconcentrated ML cost function
(depending on all the parameters instead of only the DoAs),
which will generally have a different resolution probability.
Note that the use of (2) is more convenient for DoA detec-
tion applications, since the search space is constrained to the
parameters of interest.
In this paper, we follow the steps in [4] and try to char-

acterize the resolution probability of the two ML algorithms,
although we concentrate on the more popular version of the
UML cost function as in (2), instead of the unconcentrated
version considered in [4]. We will assume that the received
signals follow the unconditional model, so that they can be
modeled as Gaussian random variables. To overcome the dif-
ficulty of the complicated dependence of the UML cost func-
tion on the received snapshots, we take an asymptotic ap-
proach and characterize the asymptotic behavior of the finite
dimensional distributions of ̂ () when both the sample
size and the array dimension increase without bound at the
same rate, i.e.  → ∞,  → , 0    1. This
asymptotic behavior will provide very good approximations
of the behavior of ̂ (), and hence the resolution proba-
bility, for finite values of .

2. MAIN RESULT

The following theorem establishes the asymptotic behavior
of finite dimensional distributions of the two cost functions

̂ () and ̂ () when  → ∞. Under these
asymptotic conditions, the two ML cost functions become
(pointwise) asymptotically close to two deterministic coun-
terparts, which will be denoted by ̄ () and ̄ (),
in the sense that |̂ ()− ̄ ()| → 0 almost surely
pointwise in  as →∞, and equivalently for the UML
cost function. These deterministic functions take the form
̄ () =

1

tr
£
P⊥()R

¤
and

̄ () =
1


log det

£
2 ()P⊥() +P()RP()

¤
+

 −


log

µ


 −

¶
− 


(3)

respectively, where R = A(̄)PA(̄)
 + 2I is the

true covariance matrix of the observations and 2 () =
1

− tr
£
P⊥()R

¤
.

The following theorem characterizes the nature of the
fluctuations of these two cost functions in the asymptotic
regime. Let 1      be a set of multidimensional points in
Θ. We define

̂ = [̂ (1)      ̂ ()]


̄ = [̄ (1)      ̄ ()]


and take the equivalent definitions for the UML cost function.
The next theorem shows that when  → ∞ the random
vectors ̂  ̂ fluctuate as Gaussian random variables
around their asymptotic means ̄ ̄. The result is
also valid if we allow the number of sources  to depend on
 , as long as lim sup  1. However, to avoid unnec-
essary technical complications, we will generally stick to the
simpler case of fixed  in the following discussion. The an-
gle vectors  may depend on  , assuming that P() is
well defined over all .

Theorem 1 Assume that {y()  = 1     } forms a se-
quence of i.i.d. circularly symmetric Gaussian random vari-
ables, whose real and imaginary parts are independent, have
zero mean and covariance 05R. Assume that the spectral
norm of R is bounded in  and that 2 remains constant
regardless of  . Consider the quantity 2 = ̄ () =
1

− tr
£
P⊥()R

¤
and define the × matrix P as

P = P() (P()RP())
#
P()

where (·)# denotes the Moore-Penrose pseudo-inverse. Then,
as → ∞ , → , 0    1, the random vectors
Γ−1 (̂ − ̄) and Γ−1 (̂ − ̄)

converge in law to a multivariate standardized Gaussian
distribution, where

{Γ} =
1


tr
h
RP⊥()RP

⊥
A()

i

2
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and

{Γ} =
{Γ}

2
2


+
1

2

1


tr
£
P⊥()RPR

¤
+
1

2

1


tr
£
P⊥()RPR

¤−logµ1− 1


tr [RPRP]

¶


Before turning to the proof of the above result, let us
draw some conclusions that can be derived from it. First
of all, it is interesting to observe that when  → ∞,
the two cost functions are asymptotically close to the two
deterministic counterparts ̄ () and ̄ (). Curi-
ously enough, these two cost functions are equal (up to a
constant, for the UML case) to the cost functions that one
would obtain by letting  → ∞ for fixed . Hence, if the
problem is well posed and the DoAs are identifiable, the two
deterministic equivalents ̄ () and ̄ () will have
a single global minimum located at the true DoAs, namely
̄ = argmin∈Θ ̄ () = argmin∈Θ ̄ (). This
corroborates the good asymptotic properties of both ML al-
gorithms in situations where are comparable in magni-
tude.
On the other hand, it is also true that, even if the two as-

ymptotic equivalents present a single global minimum at the
true value of the DoAs, these functions are in practice highly
multimodal, i.e. they present several local minima. Since the
original random cost functions fluctuate around these deter-
ministic equivalents, there is a certain probability that one of
these local minima will be lower than the one in ̄, thus gen-
erating an outlier in the DoA estimation process. When this
happens, we declare loss of resolution. Therefore, we can
define the resolution probability as the complementary of the
outlier probability, which was was well studied in [4]. More
specifically, if ̂ () is a generic cost function that fluctuates
around a deterministic ̄ (), which has +1 local minima at
the values ̄ 1     , the probability of resolution can be
defined as

 = P

"
\
=1

©
̂ ()  ̂

¡
̄
¢ª#

 (4)

It was shown in [4] that this definition of  provides a
very accurate description of both the breakdown effect and
the expected mean squared error (MSE) of the DoA estima-
tion process. Unfortunately, in our ML setting, (4) is dif-
ficult to analyze for finite values of  due to the com-
plicated structure of the cost functions (1)-(2). For this rea-
son, [4] focused instead on the union bound of (4) –obtained
when assuming independent events– and considered a sim-
pler form for the UML cost function, assuming independent
source signals. Theorem 1 provides a very simple way of ap-
proximating (4), by simply using the asymptotic distributions
(as → ∞) instead of the actual ones. It will be shown
below via simulations that the result provides a very accurate
description of the actual probability, even for very low .

It is important to remark that Theorem 1 does not formally
imply that the use of the asymptotic finite-dimensional distri-
butions in (4) would give the asymptotic resolution probabil-
ity of the CML and UML methods. This is because the num-
ber of local minima  of ̄ () may in practice increase with
 , and this substantially complicates the asymptotic behav-
ior of (4). We conjecture that this will be the case for rea-
sonably well behavedA(), but a more rigorous study of this
problem is left for future research.

3. SKETCH OF THE PROOF OF THEOREM 1

Due to the strict space constraints, we only provide an out-
line of the proof corresponding to the UML cost function
(the proof for the CML cost follows the same steps). We be-
gin by pointing that, using simple algebra, the expression of
̂ () in (2) can be re-written as

̂ () =
 −


log ̂2+

1


log det

h
Q () R̂Q ()

i
(5)

where Q () is an  ×  matrix of orthogonal columns
such that P() = Q ()Q

 () and where ̂2 =
1

− tr
h
P⊥()R̂

i
. It is apparent from (5) that the only

source of randomness in ̂ () is through the spectrum
(eigenvalues) of R̂ andQ () R̂Q (). We now introduce
a novel result that describes the asymptotic fluctuations of
linear spectral statistics associated with multiple matrices of
this type.

3.1. An intermediate result

Let {R1    R} denote a collection of  Hermitian pos-
itive semidefinite matrices of dimension  ×  , and as-
sume that their spectral norm is bounded in  . Let R̂ =

−1R12

 XX
³
R
12



´
, where R12

 is a non-necessarily

Hermitian  × matrix such that R = R
12



³
R
12



´
,

and X is an  ×  matrix of i.i.d. Gaussian random vari-
ables with law CN (0 1). Taking  ∈ C+ (upper complex
semi-plane), we define the random complex functions

̂() =
1


tr

∙³
R̂ − I

´−1¸
where  = 1     . Similarly, for each  ∈ C+, we define
() as the unique solution in C+ of the following equation

 = ()

µ
1− 1


tr
h
R (R − ())

−1
i¶

and we take ̄() as

̄() =
()



1


tr

∙³
R̂ − ()I

´−1¸
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Consider the limit of () and ̄() as  goes the real axis
and let S be the positive support1 of Im ̄() on R.
Finally, let {1()     ()} be real-valued functions

that are holomorphic on the positive real axis, R+. Consider
the ×1 random vector ̂= £ ̂(1)    ̂() ¤ , each ̂() being
defined as

̂() =
1

2 j

I


()̂() (6)

where  is a clockwise oriented contour enclosing all or part
of S,  ∩ S = ∅, and such that it does not enclose  = 0.
Let ̄=

£
̄(1)    ̄()

¤
, where ̄() is defined as () replac-

ing ̂() with ̄(). The following theorem provides a
central limit theorem on the quantity (̂ − ̄). The proof
can be obtained using the approach in [6]; we omit the details
due to space constraints.

Theorem 2 According to the above definitions, consider an
×  matrix Γ with entries

{Γ} =
1

2 i

1

2 i

I


I


 (1)  (2)×

×
Ã
Ψ21Ψ12

(1−Ψ11)2
+

Ψ22

1−Ψ11

!
12 (7)

where  = (),

() = 

µ


µ
1− 1


tr
h
R (R − )

−1
i¶¶

and where Ψ12 = Ψ12 (1 2) is a complex function of
two variables (1 2) defined as

Ψ12 =
1


tr

"³
R
12



´
(R − 1I )

−1 R12

 ×

×
³
R12


´
(R − 2I )

−2 R12


#


Assume that Γ is invertible and that the spectral norm of Γ−1

is bounded in . Then, for a fixed  and when →∞,
 → , 0    1,Γ−1 ( − ̄) converges in law to a
multivariate standardized Gaussian random vector.

3.2. Finishing the proof of Theorem 1

Theorem 2 has a direct application to our problem, if we
simply consider the matrices R̂ = P()R̂P() and
R = P()RP(), together with R̂0 = R̂ and R0 =

R. Using these definitions, we can express

̂0() =
1


tr

∙³
R̂− I

´−1¸
̂() =

1


tr

∙³
P()R̂P()− I

´−1¸
1It can be shown that these limits exist, and that S is compact. Further-

more, both () and ̄() can be analytically extended to C\{0} ∪ S.

for  = 1    , which allows us to rewrite (5) as

̂ () =
1

2 j

I


̂() log  +

µ
1− 



¶
×

× log
⎡⎣ 

 −

1

2 j

⎛⎝I
0

̂0() −
I


̂()

⎞⎠⎤⎦
(8)

where  (resp. 0) is a clockwise oriented contour not
intersecting with any eigenvalue of P()R̂P() (resp.
R̂ ), enclosing only its non-zero eigenvalues. According to
the above identity, we are able to express the column vec-
tor ̂ as a function of quantities of the form in (6) for
 = 0     , where 0() = 2 and () = log − 2
are complex functions that are analytical on R+.
With some abuse of notation, let ̄ () denote the

quantity in (8) after replacing ̂() with ̄() according
to the definitions in Theorem 2. Using complex integration
techniques one can show that, with this definition, ̄ ()

coincides with the quantity in (3). Therefore, we can write

̂ ()−̄ () =
1

2 j

I


[̂()− ̄()] ()

+
1

2 j

I
0

 [̂0()− ̄0()] 0() + 

where we have introduced the random variable

 =

µ
1− 



¶ ∙
̂2 − 2

2
− log(1 + ̂2 − 2

2
)

¸


It can readily be seen that || → 0 in probability as
 → ∞, and therefore these terms do not contribute to
the asymptotic distribution. From this point, Theorem 1 fol-
lows from carrying out the integration in (7) with the present
definitions of 0() and () and then applying the linear
transformation formula for multivariate Gaussian random
variables. The fact that all covariance matrices are positive
definite will follow from the fact thatR  2I and that 2

does not vary with .

4. NUMERICAL EVALUATION AND ANALYSIS OF
THE RESULTS

We consider a uniform linear array with  = 5 elements
located half a wavelength apart. We first investigate the accu-
racy of the asymptotic laws in order to describe the resolution
probability in (4). To that effect, we assume that the array
receives the signals from two zero-mean Gaussian uncorre-
lated sources received with equal power from the angles of ar-
rival [16◦ 18◦]. In Figure 1 we compare the resolution prob-
ability in (4) obtained from averaging 104 realizations of the

4
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CML and UML cost functions (dotted lines), together with
the predicted value using the asymptotic statistics in Theorem
1 (solid lines). Results are given as a function of the SNR ob-
served at each array element, for different values of the sam-
ple volume ( ). The Gaussian cdf was numerically evaluated
using the approach in [7]. According to these results, a good
match is observed between the simulated and predicted values
of the resolution probability, even for relatively low .
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Fig. 1. Resolution probability (uncorrelated sources).

It might be concluded from Figure 1 that in general terms
the UML techniques provide a much lower resolution prob-
ability compared to CML. However, there exist certain spe-
cific scenarios where UML is a clear alternative to CML. This
is the case of situations where the source correlation is ex-
tremely high. To show this, in Figure 2 we plot the predicted
resolution probability as a function of the SNR in the situa-
tion where the sources are highly correlated (correlation coef-
ficient equal to 095). We observe that, when the sample size
is sufficiently large, UML is clearly more robust against high
source correlation, as already pointed out in [5].

5. CONCLUSIONS

This paper has investigated the asymptotic behavior of the
conditional and unconditional ML DoA estimation proce-
dures in the threshold region, where the generation of outliers
causes a total performance breakdown of both methods. As-
suming that the number of antennas and the sample size go to
infinity at the same rate, the finite dimensional distributions
of the CML and UML cost functions have been shown to
be asymptotically Gaussian. This result has been used to
approximate the resolution probability of these two methods
under different scenarios. The resulting analysis corroborates
the general idea that CML provides a better resolution proba-
bility than UML, except for situations with highly correlated
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Fig. 2. Resolution probability (highly correlated sources).

source signals and relatively large sample size.
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