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ABSTRACT

This paper presents a study of sensor network calibration
from time-difference-of-arrival (TDOA) measurements. Such
calibration arises in several applications such as calibration
of (acoustic or ultrasound) microphone arrays, bluetooth ar-
rays, and radio antenna networks. We propose a non-iterative
algorithm that applies a three-step stratification process, (i)
using a set of rank constraints to determine the unknown time
offsets, (ii) applying factorization techniques to determine
transmitters and receivers up to unknown affine transforma-
tion and (iii) determining the affine stratification using the
remaining constraints. This results in novel algorithms for di-
rect recovery of both transmitter and receiver positions using
TDOA measurements, down to 6 receivers and 8 transmitters.
Experiments are shown both for simulated and real data with
promising results.

Index Terms— Network Self-Calibration, TOA, TDOA,
Minimal Problem

1. INTRODUCTION

Determining the sound source positions using a number of
microphones at known locations and measuring the time-
difference of arrival of sounds have been an important ap-
plication in sound ranging and localization. Such techniques
are used with microphone arrays to enable beamforming and
speaker tracking. However, in most of such applications,
calibrating microphone positions and time of transmission
for sound sources are difficult. Self-calibration of sensor
networks using TDOA measurements is a nonlinear opti-
mization problem, for which proper initialization is essential.
It has been shown e.g. in [1, 2] that poor initialization poten-
tially gives local minima that are far off the ground truth in
both synthetic and real experiments. Several previous works
rely on prior knowledge or extra assumptions of locations
of the sensors to initialize the problem. In [3], the distances
between pairs of microphones are manually measured and
multi-dimensional scaling is used to compute microphone
positions. Other options include using GPS [4] to get approx-
imate locations, or using transmitter-receiver pairs (radio or

The research leading to these results has received funding from the
strategic research projects ELLIIT and eSSENCE, Swedish Foundation for
Strategic Research projects ENGROSS and VINST(grant no. RIT08-0043).

audio) that are close to each other [5, 6].
Another line of works focuses on solving the initialization

without any additional assumptions. Initialization of TOA
networks has been studied in [7, 8]. Initialization of TDOA
networks is studied in [9], where solutions were given to non-
minimal cases (e.g. 10 receivers, 5 transmitters in 3D). For 2D
TDOA calibration, a recursive search algorithm is proposed
in [10]. In [11], the minimal cases where all receivers lie on
a line are solved for both TOA and TDOA. Though the same
rank constraint as ours is explored in [12, 13], both methods
are iterative and dependent on initialization.

In this paper we study the initialization network calibra-
tion problem from only TDOA measurements for general di-
mensions. We utilize constraints on the rank of measurement
matrix and propose a non-iterative scheme for calculating the
time offsets. After calibrating the TDOA measurements with
the offsets, we use a two-step scheme for the subsequent TOA
problem. These schemes allow for a wider class of solv-
able cases which are closer to minimal cases for initializing
TDOA network calibration problem. This gives non-iterative
algorithms for direct recovery of both transmitter and receiver
positions using as few as 6 receivers using TDOA measure-
ments. Previous state of the art method [9], required at least
10 receivers. Solving these cases is of theoretical importance.
The solvers can also be used in RANSAC [14] schemes to re-
move outliers in noisy data. The methods are validated both
on synthetic and real data. The node localization is cross-
validated against independent recordings as well as against
computer vision based approaches.

2. PROBLEM FORMULATION

Let ri , i = 1, . . . ,m and sj , j = 1, . . . , n be the spatial
coordinates of m transmitters and n receivers, respectively.
For measured time of arrival tij from transmitter ri to receiver
sj , we have v(tij−tj) = ||ri−sj ||2, where tj is the unknown
offset for each transmitter, and v is the speed of measured
signals (assumed to be constant). We will in the sequel work
with the distance measurements (fij = vtij , oj= vtj). The
TDOA calibration problem can then be defined as follows.

Problem 2.1 (TDOA-based Network Self-Calibration) Given
relative distance measurements fij determine receiver posi-
tions ri , i = 1, . . . ,m, transmitter positions sj , j = 1, . . . , n
and offsets oj , j = 1, . . . , n such that fij = ||ri − sj ||2 + oj .
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m \ n 4 5 6 7 8 9
5 - - - - - I
6 - - I - III -
7 - I III - - -
8 - - - - - -
9 - III - - - -

10 I II - - - -

m \ n 3 4 5 6
4 - - I -
5 - - - III
6 I - - -
7 - III - -
8 - II - -
9 - - - -

K m n Nsol

3 9 5 1
3 7 6 5
3 6 8 14

2 7 4 1
2 5 6 5

Fig. 1. Cases for TDOA problem for 3D (left) and 2D (middle). (I) minimal cases, (II) solvable cases for [9] and (III) solvable
cases for our proposed method. Right: number of solutions to the polynomial systems of rank constraints on unknown offsets
for different cases in (III) (3D and 2D).

If the offsets are known or have been estimated, the con-
version from TDOA to TOA problems (where the absolute
distance dij = ||ri − sj ||2 are given) are straightforward, i.e.
by setting dij = fij − oj . Note that for both TDOA and TOA
problems, one can only reconstruct locations of receivers and
transmitters up to euclidean transformation and mirroring. In
the following discussion, we assume that the dimensionality
K of the affine space spanned by ri and sj is the same, e.g.
K = 3 for 3D problems. The minimal configurations have
previously been determined in [7] and also shown in Table 1.

3. METHODS

To solve the TDOA calibration problem, we use a stratified
approach to solve first for the offsets {oj} (Section 3.1), and
then solve the TOA calibration problem (Section 3.2).

3.1. Estimating the Offsets

In this section we present two new techniques for solving the
unknown offsets. The first scheme is an improved version of
the linear factorization in [9]. Another one is to make full use
of the rank constraints on the measurement matrix.

3.1.1. Linear Method

We know that d2ij = (fij − oj)
2 = (ri − sj)

T (ri − sj) =

rTi si − 2rTi sj + sTj sj . By constructing the vectors Ri =[
1 rTi rTi ri

]T
and Sj =

[
sTj sj − o2j −2sTj 1

]T
, we

obtain f2
ij − 2fijoj = RT

i Sj . By collecting Ri and Sj

into matrix R ((K + 2) × m) and S ((K + 2) × n), we
have F = RTS, where F is the m × n matrix containing
{f2

ij − 2fijoj}. This suggests that matrix F is at most of
rank K + 2 as we increase m and n. A slight modification to
scheme in [9] can reduce the required number of receivers by
1. The idea is to exploit the structure of S - ones in the last
row, by multiplying F from the right by a n× (n− 1) matrix
Cn of the form [−1n−1 In−1]

T where 1n−1 is a (n− 1)× 1
vector with 1 as entries and In−1 is identity matrix of size
(n− 1). This operation subtracts from each column j (j ≥ 2
) of S the first column and gives a matrix with all zeros at
the last row. Equivalently, this gives F̄ = FCn = R̄T S̄,

where F̄ is a m × (n − 1) matrix with entries f̄ij =

f2
i,j+1 − f2

i1 − 2fi,j+1oj+1 + 2fi1o1, R̄i =
[
1 rTi

]T
and

S̄j =
[
sTj+1sj+1 − o2j+1 − (sT1 s1 − o21) −2(sj+1 − s1)T

]T
.

This effectively gives a constraint that the matrix F̄ is at most
of rank K + 1. Let A = {f2

ij − f2
i1}j≥2

, B = {−2fij}j≥2
,

c = {2fi1}i≥1
and e is a (n− 1)× 1 vector [o1, . . . , o1]T , T

is the diagonal matrix with {oj}j≥2
as entries. We have

F̄ = R̄T S̄ =
[
A B c

] In−1

T
eT

 . (1)

Given the first column of R̄T are all ones, there exist (K + 1)
columns of F̄ whose linear combination forms a column of
ones. If we choose m = 2K + 3 (

[
A B c

]
is of full rank)

and n = K + 2 (F̄ is of rank K + 1), we can find a unique
solution for u to the following system:

F̄w =
[
A B c

] In−1

T
eT

w

︸ ︷︷ ︸
u

=
[
A B c

]
u = 1

2K+3
. (2)

Then we can recover the offsets {oj} as o1 =
u
2K+3∑K+1
j=1 uj

and oj

=
u
j+K

uj−1
for j = 2, ...,K + 2. For cases in 3D (K = 3), we

need only 9 receivers and 5 transmitters.

3.1.2. Non-linear Rank Constraints

We further utilize the similar structure in R. By multiplying
F̄ from the left with Cm = [−1m−1 Im−1]

T , this gives cor-
respondingly F̃ = CT

mFCn = R̃T S̃. Here R̃ = RCm and
S̃ = SCn and F̃ is of size (m− 1)× (n− 1). Given that the
first row of R̃ and the last row of S̃ are all zeros, the equal-
ity F̃ = R̃T S̃ is preserved after removing the last row of R̃
and the first row of S̃. We then have R̃i =

[
(ri+1 − r1)T

]
,

S̃j =
[
−2(sj+1 − s1)T

]
and F̃ = R̃T S̃ = {f̃ij} with f̃ij =

gij − g
0j
− g

i0
+ g

00
, where gij = f2

i+1,j+1− 2fi+1,j+1oj+1.
It is clear that the matrix F̃ is at most of rank K. Therefore,
given that each entry of F̃ is a function of the unknown off-
sets {o1, . . . , on}, we can solve for the offsets by enforcing
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these rank constraints on the sub-matrices of F̃. Specifically,
all (K+1)×(K+1) sub-matrices of F̃ (if there exist) will be
rank-deficient and have rank K. This gives equivalently con-
straints on the determinants of the set of (K + 1)× (K + 1)
sub-matrices ΛK+1 : detQ = 0, ∀Q ∈ ΛK+1.

For a (m− 1)× (n− 1) matrix F̃ of rank K, the number

of constraints Nc = |ΛK+1| =

(
m− 1
K + 1

)(
n− 1
K + 1

)
among

which (m − 1 −K)(n − 1 −K) constraints are linearly in-
dependent. Each constraint is a polynomial equation of de-
gree K + 1 in {o1, . . . , on}. For different choices of m and
n, this system of polynomials equations can either be well-
defined, over-determined or under-determined. To resolve
this, we rely on algebraic geometry tools and make use of
Macaulay2 [15]. It turns out that there are several choices
for m and n that produce well-defined and solvable polyno-
mial systems. We summarize those cases and the number of
solutions of the related polynomial systems for K = 3 and
K = 2 in Table 1. In the following discussion, we denote the
case with m receivers and n transmitters as mr/ns. Note that
the two cases with only 1 solution: 9r/5s in 3D and 7r/4s in
2D correspond to the linearly solvable cases discussed in Sec-
tion 3.1.1. Given these solvable cases, we can apply numer-
ically stable polynomial solvers based on methods described
in [16] to solve for the unknown offsets.

One could say that we are using necessary constraints on
the corrected matrix D with entries d2ij = (fij − oj)

2 to de-
termine the offsets. Notice, however, this constraint is a nec-
essary, but not sufficient condition on D coming from TOA
measurements. For instance, although 7r/6s is a minimal case
for determining the offsets from the rank(CT

mDCn) = 3, the
resulting TOA problem is actually over-determined [8].

3.2. Solving TOA Calibration
Once we have calibrated the measurement matrix with the off-
sets {oj} estimated as in Section 3.1, we can proceed to solve
the locations of {ri} and {sj} as a TOA problem. We follow
the two-step technique in [8] that reduce the TOA problem to
solving a system of polynomials with N = K + (K + 1)K/2
unknowns e.g. for K = 3, N = 9. Due to the limited space
here, we here briefly discuss the related modification and we
refer to [8] for more technical details. Specifically, after a
factorization step using singular value decomposition (requir-
ing m ≥ 4 and n ≥ 4), for m receivers and n transmitters,
one obtains m − 1 linear equations and n polynomial equa-
tions. Then the linear equations are utilized to reduce the
number of unknowns further. There are two minimal config-
urations i.e. m = 6, n = 4 (equivalently m = 4, n = 6) and
m = 5, n = 5, which are difficult to solve. For all our solv-
able cases for unknown offsets in 3D, we can actually utilize
the extra measurements to form as many linear equations as
possible. For instances, for the case 9r/5s, one can eliminate
8 out of the 9 unknowns utilizing the 8 linear equations. Then
we can solve for the only remaining unknown with one of

non-linear equations (among the 5) with companion matrix.
For other cases, we just need to solve corresponding polyno-
mial systems which are much easier to solve than the minimal
cases.

3.3. Solving TDOA Self-Calibration

We can combine the steps for unknown offsets and the TOA
problem to solve the full TDOA problem. To this end, we
have devised a set of close-to-minimal solvers for both 3D and
2D TDOA self-calibration problem. We discuss here schemes
for solving the problem with over-determined measurements.

We can apply similar strategy as incremental structure
from motion in computer vision. One starts by choosing m∗

receivers that have largest number of correspondences from
n∗ transmitters and solves for the offsets. Then the offsets of
remaining transmitters can then be solved incrementally with
least square followed by also a non-linear optimization to re-
fine the solution. We can then recovered the positions of the
chosen receivers and transmitters. The positions of remain-
ing receivers and transmitters are calculated by trilateration
e.g. [17]. In the presence of outliers, our proposed solvers
can be utilized for robust fitting technique e.g. RANSAC.

The parameters obtained can then be used as initial es-
timates to local optimization of the non-linear least squares
minri,sj ,oj

∑
ij (fij − (||ri − sj ||2 + oj))

2 using standard
techniques (Levenberg-Marquart) in order to obtain the max-
imal likelihood estimate of the parameters.

4. EXPERIMENTS

4.1. Synthetic Data

In this section, we study the numerical behaviors of the
TDOA solvers on synthetic data. We simulate the positions
of microphones and sounds as 3D points with independent
Gaussian distribution of zero mean and identity covariance
matrix. As for the offsets, we choose them from independent
Gaussian distribution with zero mean and standard deviation
10. We study the effects of zero-mean Gaussian noise on the
solvers, where we vary the standard deviation of the Gaussian
noise added to the TDOA measurements. When solving TOA
problem, we have used the scheme discussed in Section 3.2
for over-determined cases. To compare the reconstructed po-
sitions of microphones and sounds with the true positions, we
rotate and translate the coordinate system accordingly. We
can see that from Fig. 2, our proposed solvers 9r/5s, 7r/6s
and 6r/8s give numerically similar results as the 10r/5s case
in [9] for both minimal settings and over-determined cases.
In Fig.3, random initialization of the time offsets resulted
in poor convergence in the non-linear optimization, while
our method provides with a much better starting point. On
the other hand, we have also compared our solver with the
iterative method proposed in [12] for estimating the offsets.
The method in [12] converges very slowly (5sec. - 1min. on
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Fig. 2. Synthetic experiments for TDOA solvers on 3D under
Gaussian noise. The errors of estimated time offsets (left) and
reconstructed positions of microphones and sounds (right) are
shown. (Top) Performance of different solvers (10r/5s [9],
9r/5s, 7r/6s and 6r/8s) with their corresponding minimal set-
tings for solving offsets; (Bottom) with 20 receivers and 20
microphones.

a MacBook Air with i5 1.8GHz core, especially for (near)
minimal settings) and tends to converge to the wrong local
minima. While our solvers perform consistently well for all
cases, they are also much faster (approximately 0.5s for the
unoptimized codes). This suggests the usability of our pro-
posed solvers in RANSAC as well as for practical settings
with with limited availability of the receivers.

4.2. Real Data

To collect real TDOA data, we work with sound signals and
microphones. We placed 8 synchronized microphones (Shure
SV100) recorded at 44.1kHz in an office. They are approxi-
mately 0.3-1.5 meters away from each other in a non-planar
fashion. We connected them to an audio interface (M-Audio
Fast Track Ultra 8R), which is connected to a computer. We
generated sounds by moving around in the room and clapping
approximately 1-2 meters from the microphones. We col-
lected 5 independent recordings of approximately 20s. Each
recording contained roughly 30 claps (transmitters).

To obtain TDOA measurements, we coarsely matched
sounds of the claps to sound flanks (edges between peri-
ods with low energy and periods with high energy) recorded
from different microphones. For the experiment we used
only those claps that were detected in all 8 channels. We
run both the 7r/6s and 6r/8s solvers to determine the offsets
followed by an alternating optimization that refines the offset
estimation. After solving the unknown transformation and
translation, we recover an initial euclidean reconstruction for
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random
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6r/8s

6r/8s + opt

Fig. 3. Initialization with random offsets and our 6r/8s solver
with varying number receivers (8 to 20) and 8 transmitters
(noise level 10−4) for non-linear optimization.

the locations of microphones and claps. Finally we refine
the reconstruction with non-linear optimization. The result
of one of these 5 reconstructions are shown in Figure 4 (mid-
dle). The reconstructed microphone positions from these 5
independent multi-channel recordings were put in a common
coordinate system and compared to each other. The average
distance from each microphone to the its corresponding mean
position (estimated from corresponding reconstruction of the
5 recordings) is 2.60 cm. It is important to point out that
without proper initialization using our methods, the solutions
we get converge poorly (with large reconstruction errors).
Previous solvers do not work here due to either insufficient
number of receivers (10 receivers needed in [9]) or violating
the assumption that one of the microphones collocates with
one of the claps [6] .

As an additional evaluation, we have also reconstructed
the locations of the microphones based on computer vision
techniques. We took 11 images of the experimental setup.
Figure 4 (left) shows one of the 11 images used. We man-
ually detected the 8 microphone center positions in these 11
images and used standard structure from motion algorithms
to estimate the positions of the 8 microphones. The resulting
reconstruction is also compared to that of the five structure
from sound reconstructions. The comparison is shown in Fig-
ure 4 (right). We can see the TDOA-based reconstructions are
consistent with the vision-based reconstruction.

5. CONCLUSIONS

In this paper we have studied the sensor network calibration
problem in the time-difference-of-arrival (TDOA) setting,
where only relative distances between the transmitters and re-
ceivers are given. We have formulated the problems utilizing
stricter non-linear constraints on the measurements, which is
the key to reduce the required number of measurements to
solve these problems. We have shown that our non-iterative
solvers are fast and numerically stable1.

There are several interesting avenues of future research.
Although, the presented technique improve on the state-of-
the-art, the minimal cases for TDOA structure from sound

1Codes are available at http://www2.maths.lth.se/vision/downloads/.
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Fig. 4. Results on TDOA with microphones and sounds. Left : Reconstruction of microphone (8, red - ’o’) and sound (21,
blue - ’�’) positions for one the 5 recordings; Right : Reconstructed microphone positions estimated from 5 different tracks of
TDOA measurements and the corresponding reconstruction from computer vision (black - ’+’)

have not been solved. It would be interesting to solve these
cases, to study the failure modes, both generic failure modes
(or critical configurations) for the generic problem, and also if
there are additional failure modes of the presented algorithms.
One commonly encountered critical configuration is when the
transmitters or receivers span a lower dimensional space, e.g.
if the receivers or transmitters are all on a plane or on a line.
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