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ABSTRACT

We consider a blind calibration problem in a compressed

sensing measurement system in which each sensor introduces

an unknown phase shift to be determined. We show that

this problem can be approached similarly to the problem of

phase retrieval from quadratic measurements. Furthermore,

when dealing with measurements generated from multiple

unknown (but sparse) signals, we extend the approach for

phase retrieval to solve the calibration problem in order to re-

cover the signals jointly along with the phase shift parameters.

Additionally, we propose an alternative optimization method

with less computation complexity and memory requirements.

The proposed methods are shown to have significantly better

recovery performance than individual recovery of the input

signals when the number of input signals is sufficiently large.

Index Terms— Compressed sensing, calibration, phase

estimation, phase retrieval, lifting

1. INTRODUCTION

Compressed sensing theory shows that K-sparse signals can

be sampled at much lower rate than apparently required by the

Nyquist-Shannon theorem [1]. More precisely, if x ∈ C
N is

a K-sparse source vector then it can be captured by collecting

only M ≪ N linear measurements

yi = m
′

ix, i = 1, . . . ,M (1)

In the above equation, m1, . . . ,mM ∈ C
N are known mea-

surement vectors, and .′ denotes the conjugate transpose op-
erator. Under certain conditions on the measurement vectors,

the signal can be accurately reconstructed by solving, e.g.,

x
∗

ℓ1
= arg min

z

‖z‖1 subject to yi = m
′

iz, i = 1, . . . ,M

where ‖·‖1 denotes the ℓ1-norm, which favors the selection

of sparse signals among the ones satisfying the measurement
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(ANR), project ECHANGE (ANR-08-EMER-006) and by the European Re-

search Council, PLEASE project (ERC-StG-2011-277906). LD is on a joint

affiliation between Univ. Paris Diderot and Institut Universitaire de France.

constraints. It has been showed that the number of measure-

ments needed for accurate recovery of x scales only linearly

with K [1].

In some practical situations it is not possible to perfectly

know the measurement vectors m1, . . . ,mM . In applications

with sensors of uncertain locations or intrinsic parameters

such as radio imaging equipment or microphone arrays, the

measurement vectors have an unknown phase shift or scale

which severely affects the reconstruction quality if ignored.

We call the problem of signal recovery and determination of

unknown parameters in this perturbed system without any

special calibration input as the compressive calibration prob-

lem, and a simplified version of this problem dealing with

only unknown phase shifts as the phase calibration prob-

lem. An extension of compressed sensing recovery which

estimates the unknown gains along with the unknown sparse

signals has been presented in [2], and it is shown that the

recovery fails when the sensors have unknown random phase

shifts. Therefore an alternative approach to handle such cases

is needed.

A completely different but relevant problem arises for

applications such as optical interferometric imaging for as-

tronomy in which one has only access to the magnitude of

the measurements zi = |yi|
2 = m

′

ixx
′
mi, i = 1, . . . ,M .

Reconstructing the original signal from such magnitude mea-

surements is called the phase retrieval problem which in-

volves similar challenges to phase calibration. Nevertheless,

Candès et al. have recently showed [3] that x could be re-

covered exactly by solving a convex optimization problem

with the number of measurements, M > N , essentially

proportional to N . The method relies on finding a posi-

tive semi-definite matrix X , xx
′ of rank-one such that

|yi|
2 = m

′

iXmi, i = 1, . . . ,M . The following convex

optimization problem can then be solved to recover X:

X
∗ = arg min

Z

trace(Z) (2)

subject to Z < 0

|yi|
2 = m

′

iZmi, i = 1, . . . ,M

The trace norm trace(·) favors the selection of low rank ma-
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trices among all the ones satisfying the constraints. Let us ac-

knowledge that this problem was also previously studied the-

oretically in, e.g., [4], but a larger number of measurements is

needed for fast reconstruction of the original signal with the

technique therein (on the order of N2 instead of N ). Note

also that several simple iterative algorithms such as the one

described in [5] have been proposed to estimate the signal x

from magnitude measurements, however there is in general

no guarantee that such algorithms converge.

When the measured vector x is sparse, a modification of

this so-called Phaselift approach was then proposed by Ohls-

son et al. [6, 7]. This new approach is called Compres-

sive Phase Retrieval via Lifting (CPRL) and the optimization

method is named as Quadratic Basis Pursuit which consists in

solving the problem (2) with the addition of a cost term that

penalizes non-sparse matrices.

X
∗ = arg min

Z

trace(Z) + λ‖Z‖1 (3)

subject to Z < 0

|yi|
2 = m

′

iZmi, i = 1, . . . ,M,

where λ > 0. The authors also provide bounds for guaranteed
recovery of this method using a generalization of restricted

isometry property.

In this paper, we study the phase calibration problem

where the measurements y1, . . . , yM are accessible but the

measurement vectors m1, . . . ,mM are not precisely known.

Unlike earlier studies on uncertain measurement matrices [8],

we restrict our study to the case where each sensor introduces

an unknown, but constant, phase shift on the measurements.

To calibrate the system, we propose to measure a few, but

unknown, sparse signals via this not perfectly known sens-

ing system. Then, we show that it is possible to reconstruct

these signals via a similar approach to the compressive phase

retrieval method (3) used in phase retrieval. Differently from

CPRL however, the proposed method provides joint recov-

ery of the input signals and the number of necessary input

signals as well as the sparsity play a significant role to de-

termine whether perfect recovery is possible. The provided

experimental results show that it is possible to significantly

improve upon the recovery performance of CPRL given that

the number of signals is sufficiently large. We also propose

an alternative recovery method that is more scalable in terms

of number of input signals and has less computational com-

plexity as well as less memory requirements than the direct

extension of the phase retrieval approach.

2. PROBLEM FORMULATION

Suppose that the measurement system in (1) is perturbed by

complex gains at each sensor i and there are multiple sparse

input signals, xl ∈ C
N , l = 1 . . . L, applied to the system

such that

yi,l = die
jθim

′

ixl i = 1 . . . M, θi ∈ [0, 2π), di ∈ R
+

(4)

This problem can be studied with two special cases:

• Gain (magnitude) Calibration: The phase shifts, θi, are

known and calibration consists of determining the un-

known real gains, di ∈ R
+. This problem has been

studied in [2] and it is shown that recovery of di and xl

is possible with convex relaxation.

• Phase Calibration: The gain magnitudes, di, are

known, and calibration consists in determining the

unknown phase shifts for each sensor, θi.

In this paper we consider the latter scenario, hence dimi is

simply replaced with mi for the rest of the discussions. We

focus only on the noiseless case for the sake of simplicity.

2.1. Fundamental differences with CPRL

Unlike the classic phase retrieval problem, in phase calibra-

tion we have access to the amplitude and the phase informa-

tion of each measurement yi,l. However the phase shifts θi,

i = 1 . . . M , at the sensors are unknown, preventing us to

use standard compressed sensing algorithm to reconstruct the

training signals. When L = 1, these arbitrary phase shifts

cannot be determined, and only the magnitude of the measure-

ments can be used to reconstruct the input signal. The case

L = 1 is thus equivalent to the phase retrieval problem dis-

cussed in [3, 6, 9]. However, the problem becomes fundamen-

tally different when L > 1. Making use of the phase infor-

mation and noticing that the measurements yi,l, l = 1 . . . L,
for sensor i are correlated through the same phase shift fac-

tor, we propose two methods exploiting these correlations and

phase information to reach better recovery performance than

one could obtain using CPRL and disregarding all the mea-

sured phase.

Furthermore, in comparison to CPRL, a new interesting

question arises. While, for CPRL, one is interested in how

many measurements are sufficient to recover the initial sparse

signal, we are also interested in the question of how many

training signals are sufficient to calibrate the system. Even

though the optimization problem to solve for calibration is

also much more complex compared to CPRL, a solution to

handle this issue is proposed in the following sections.

Finally, the potential applications of the proposed method

and phase retrieval algorithms are also significantly different

as discussed earlier.

2.2. Joint Phase Calibration

Let us suppose that we have in hand uncalibrated measure-

ments yi,k from L > 1 training signals. We define the joint

2
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signal matrix X ∈ C
LN×LN as

X ,







x1

...

xL






[x′

1 · · ·x
′

L] = xx
′ =







X1,1 · · · X1,L

...
. . .

...

XL,1 · · · XL,L







(5)

which is rank-one, positive semi-definite, and sparse when

the input signals, xl, are sparse. Note that we have Xk,l ,
xkx

′

l ∈ C
N×N . A naive approach to reconstruct the training

signals is using CPRL with only the magnitude of the mea-

surements yi,k, i.e., by enforcing the constraints |yi,k|
2 =

m
′

iXk,kmi, i = 1 . . . M , k = 1 . . . L as in (3). With this

formulation, we have LM constraints to reconstruct L sparse

rank-one matrices of size N ×N . However, we do not exploit

the fact that the unknown phase shift factors are the same for

all the L training signals.

To exploit these correlations, we define the cross measure-

ments gi,k,l between the kth and lth measurements at the ith

sensor as

gi,k,l , yi,ky′

i,l i = 1 . . . M (6)

= ejθim
′

ixkx
′

lmie
−jθi k, l = 1 . . . L (7)

= m
′

iXk,lmi. (8)

Then, to reconstruct the original training signals, we propose

to recover the joint matrix X by solving

X
∗ = arg min

Z

trace(Z) + λ‖Z‖1 (9)

gi,k,l = m
′

iZk,lmi i = 1 . . . M

Z < 0 k, l = 1 . . . L.

One can remark that the optimization problem in (3) and (9)

are both Quadratic Basis Pursuit. Indeed, in both cases, we

want to reconstruct a sparse rank-one matrix. However, the

number of constraints is multiplied by L because we now ex-

ploit the correlation between the measurements. Even though

the input signals are assumed to be sparse, the problem can

easily be modified to handle the cases where the signal is

sparse in a known domain,Ψ, such that ‖Z‖1 is replaced with

‖ΨZΨ
′‖1 in (9).

Finally, note that, as in (2) and (3), the final estimated

signal x∗ (and therefore x
∗

1, . . . .x
∗

L) is defined up to a global

phase since X
∗ = x

∗
x
∗′. The phases θi can be recovered

given yi,l and x
∗.

2.3. Scalable Phase Calibration

One can observe that both the size of X and the number of

cross measurements grow with L2 which can severely affect

the scalability of the proposed algorithm. To address this

problem, we propose instead to construct sub-matrices of X:

X̄l ,

[

Xl,l Xl,(l)L+1

X(l)L+1,l X(l)L+1,(l)L+1

]

l = 1 . . . L (10)

X1,1

X2,2

X3,3

X1,2

X2,1

X3,2

X2,3

XL−1,L−1

XL,LXL,L−1

XL−1,L

X1,L

XL,1

X1,L

XL,1

X1,1

X̄1

X̄2

X̄L−1

X̄L

X

Fig. 1: The sub-matrices X̄1, . . . , X̄L within the matrix X.

where (l)L , l (mod L). A depiction of the sub-matrices

with respect to X can be seen in Figure 1. Similarly to X, X̄l

are also rank-one, positive semi-definite and sparse matrices.

Therefore, an alternative to the optimization problem (9) is to

construct only the sub-matrices by solving

X̄
∗

1, . . . , X̄
∗

L =

arg min
Z̄1...Z̄L

L
∑

k=1

trace(Z̄k) + λ‖Z̄k‖1 (11)

subject to Z̄1 < 0, . . . , Z̄L < 0

i = 1 . . . M gi,l,l = m
′

iZl,lmi

l = 1 . . . L gi,(l)L+1,l = m
′

iZ(l)L+1,lmi

gi,l,(l)L+1 = m
′

iZl,(l)L+1mi

Z̄l =

[

Zl,l Zl,(l)L+1

Z(l)L+1,l Z(l)L+1,(l)L+1

]

As a result of this optimization, the estimated signals can be

recovered considering

X̄
∗

l =

[

x
∗

l

x
∗

(l)L+1

]

[

x
∗

l
′

x
∗

(l)L+1
′

]

l = 1 . . . L (12)

Note that in order to recover the input signals up to a global

phase shift, the phases of each input signal xl, l = 1, . . . , L
must be adjusted so that all signals are consistent with the

sub-matrices X̄1, . . . , X̄L.

The optimization in (11) deals with L matrices of size

2N × 2N instead of a single LN × LN matrix. The num-

ber of constraints are also reduced from ML2 to 3ML for

L > 3 with respect to (9) while retaining the joint recovery

characteristic. A clear comparison can be seen in Table 1.

There are several remarks that can be made on the joint

phase retrieval and calibration methods in (9) and (11):

1. The proposed methods can only recover the phase shifts

at the sensors and the input signals up to a global phase

shift factor. However the global phase shift is common

3
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(a) CPRL (eqv. to Joint PC, L = 1)
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(b) Joint PC, L = 6
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(c) Scalable PC, L = 6
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(d) Joint PC, L = 3
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(e) Joint PC, L = 10
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(f) Scalable PC, L = 10

Fig. 2: The probability of perfect recovery for N = 100 with respect to δ , M/N and ρ , K/M . The solid line indicates

the Donoho-Tanner phase transition curve for fully calibrated compressed sensing recovery [10]. The dashed line indicates the

boundary to the region where K > N .

for all θi and xl unlike the case when xl are recovered

by CPRL individually using (3).

2. Even though the optimization method utilized in (9) is

similar to (3), the joint measurements, gi,k,l, are com-

plex valued and the phase information in yi,l are uti-

lized in the recovery. While this improves the perfor-

mance, the proposed method cannot be applied to cases

where only the magnitude of the measurements are di-

rectly observed or phase information is completely lost.

3. The matrix X has a much larger size than the matri-

ces in Phaselift or CPRL which results in higher com-

putational complexity and memory requirement. This

issue can partly be overcome with algorithms exploit-

ing the sparsity and low rank nature of the matrix dur-

ing optimization to reduce the memory requirements

as well as complexity as discussed in [3]. The matri-

ces X̄1, . . . , X̄L have comparable size to the CPRL or

Phaselift algorithm.

3. EXPERIMENTAL RESULTS

In order to test the performance of the proposed algorithm,

phase transition curves as in the compressed sensing recovery

are plotted for a signal size N = 100 with the measurement

vectors, mi, and all the non zero entries in the input signals,

xl, randomly generated from an i.i.d. normal distribution.

Table 1: The comparison between CPRL and the proposed

methods for the reconstruction of L input signals of size N

# of

Constraints

Size of

Unknown(s)
Final Output

CPRL ML
L matrices

of N × N
L signals with L

arbitrary phase shifts

Joint PC ML2 NL × NL
matrix

L signals with single

global phase shift

Scalable

PC
3ML

L matrices

of 2N × 2N
L signals with single

global phase shift

The signals (and the phase shift parameters) are recovered

for the number of inputs L = 1, 3, 6, 10 with the proposed op-

timization in (9) using an ADMM [11] based algorithm. The

fast optimization method proposed in (11) is also performed

for number of inputs, L = 6, 10, for comparison. The perfect

reconstruction criteria is selected as σ(x,x∗) > 0.9, where
the absolute correlation factor σ(·, ·) is defined as

σ(x1,x2) ,
|x′

1x2|

‖x1‖2‖x2‖2
(13)

so that the global phase difference between the source and

recovered signals is ignored.

It is observed in the simulations that the optimization pa-

rameter λ is quite sensitive and must be selected carefully. In

our experiments we found that a good choice of lambda varies

with ρ = K/M , and we used the experimentally found values

4
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Table 2: Variation of λ with respect to ρ = K/M in the

experiments. The λ at remaining ρ values are linearly inter-

polated from nearest points in the table.

ρ 0.05 0.1 0.2 0.4 0.9

λ 2.5 0.4 0.1 0.03 0.01

shown in Table 2. A rule of thumb for selecting λ can be in-

ferred from the set of values in Table 2 such that λ ≈ 0.04 1
ρ2 .

It should be noted that these values are optimized for higher

speed of convergence whereas a much broader range of λ val-

ues permit recovery. Therefore a viable λ can be chosen with-

out knowing K or ρ.

The probability of recovery of each of the proposed meth-

ods with respect to δ , M/N and ρ , K/M are shown in

Figure 2 for a varying number of input signals, L. The re-

sults provided for L = 1 represents the performance of the

individual recovery of the input signals which is equivalent

to the CPRL method [6]. It can be observed that the pro-

posed joint recovery methods provide significantly better per-

formance than individually recovering the signals, even when

there are only few input signals. The performance keeps im-

proving with increasing L, although the improvement gets

less noticeable as L gets larger.

The performance of the scalable optimization can be seen

in Figures 2(c) and 2(f). Although there is a slight perfor-

mance degradation with respect to the joint optimization, the

scalable optimization can still be preferable when L is too

large and computational or memory requirements for joint op-

timization are too high. In our simulations, we observed that

the scalable optimization took less than half the time and con-

sumed around half the memory than the joint optimization for

L = 10, however it should be noted that the convergence is

observed to be slower in terms of number of iterations due to

larger number of constraints in (11).

4. CONCLUSIONS AND FUTURE WORK

In this paper we have investigated sparse signal recovery in a

compressive measurement system in which each sensor intro-

duces an unknown but fixed phase shift to the measurements.

Extending the phase retrieval methods studied in the litera-

ture, we have shown that it is possible to significantly improve

the signal recovery performance when multiple unknown in-

puts are measured through the system. Our approach makes

use of the correlation among the multiple measurements by

each sensor to jointly recover the unknown sparse inputs and

the phase shifts introduced by each sensor up to a global phase

factor common to all unknowns. A second optimization ap-

proach with significantly better scalability at the expense of

slightly reduced performance is also introduced. It has com-

putational complexity and memory requirements that are lin-

ear in the number of sparse inputs which as a result is prefer-

able for large number of input signals.

As a future work, we first plan to investigate the limits of

the performance of the presented algorithms as the number of

input signals gets larger and in the presence of noise. Sec-

ondly, we plan on developing a more general approach to per-

form complex valued gain calibration combining the methods

introduced in this paper with earlier methods studied for gain

magnitude calibration. Lastly, our aim is to investigate non-

convex approaches for faster and memory efficient recovery.
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