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ABSTRACT

Heart rate variability (HRV) signals are processed using
the new time-frequency representation (PRSA-TFR) de-
fined based on the Phase-Rectified Signal Averaging (PRSA)
method. PRSA is a technique which enhances quasi-periodic
components in nonstationary signals and thus improves fre-
quency estimation. The PRSA-TFR is obtained by applying
the PRSA method to sliding windows along univariate sig-
nals. Our aim is to characterize the deviation of PRSA-TFR
of HRV signals during supine and tilt position from that of
white Gaussian noise. This deviation can be used as a new
tool to quantify the changes in sympathovagal balance with-
out needing to predetermine fixed spectral boundaries.

First, we derive the probability density function of the
energy distributed in the PRSA-TFR for a white Gaussian
noise. Then, the Battacharya distance is used to evaluate
the deviation of HRV PRSA-TFR from that of a Gaussian
noise. The HRV PRSA-TFR deviation is assessed separately
for supine and tilt positions. Synthetic and real HRV signals
of short-term recordings are analyzed based on this new tool.
The obtained results are compared with those obtained with
a classical spectral method.

1. INTRODUCTION

The dynamics of Heart Rate Variability (HRV) which can
be evaluated by analyzing the oscillations of the RR inter-
vals of electrocardiograms are significantly sensitive to po-
sitions, emotion and fatigue [1, 2, 3]. They are related to
the autonomic nervous system acting and influenced by both
the sympathetic and parasympathetic branches. The analy-
sis of the heart rate fluctuations can yield useful informa-
tion for sportive medicine. In recent years, several theoret-
ical and empirical research papers, related to the process-
ing and analysis of HRV time-series, have been published
[2,3,4,5,6,7,8].

In the current paper, our main contribution is to character-
ize univariate HRV time-series using the new time-frequency
representation (PRSA-TFR) [9] derived from the Phase-
Rectified Signal Averaging (PRSA) method [10]. PRSA is
a technique recently introduced to enhance quasi-periodic
components in nonstationary signals. We explore the ability
of this method to capture the local periodicities and to im-
prove the estimation of the frequency components underlying
their time-evolution. The discrete time-series are processed
using short-time sliding windows, the length of which is cho-
sen convenient to capture low and high frequency ranges.
In each time window, the PRSA is evaluated and the PRSA
spectrum is obtained. Hence, a PRSA-TFR is defined in anal-
ogy with the spectrogram [9]. In this way, the time evolution
of the most relevant frequencies is captured.

‘We demonstrate that the PRSA-TFR behavior of the HRV
data during supine and tilt positions is different from that
of independent, identically distributed (iid) Gaussian noise.
This is established by theoretically deriving the probability
density function (pdf) of the energy distributed in the PRSA-
TFR for iid Gaussian noise. Then, we use the Battacharya
distance to evaluate the deviation of the PRSA-TFR pdf of
the HRV time-series from that of iid Gaussian noise.

This deviation can be used as a new tool to quantify the
changes in sympathovagal balance without needing to pre-
determine fixed spectral boundaries. Actually, to assess the
sympatovagal balance, classical spectral analysis methods of
HRYV signals need fixed low frequency (LF) and high fre-
quency (HF) band ranges, and to date no reliable methods
for the appropriate selection of frequency ranges is proposed
even if a Task Force attempt [3] was made for a boundary
standardization. Indeed, different frequency ranges occur in
the literature [11] and these unstable frequency limits can
be explained by individual ranges which can strongly be af-
fected by physiologic conditions (health, physical activity,
breathing, gender, aging, body position, breathing frequency,
etc).

This paper is organized as follows. The principle of
PRSA and PRSA-TFR are described and the pdf of PRSA-
TFR for an iid Gaussian noise is derived in Section 2. The
HRYV data set and the Battacharya distance are summarized
in Section 3 and Section 4 respectively. Results and discus-
sions are presented in Section 5 for synthetic and real HRV
time-series. The final section concludes with a summary and
some perspectives on our study.

2. PRSA AND TIME-FREQUENCY
REPRESENTATION

2.1 A short introduction to PRSA

When applied to a discrete time signal y, the PRSA method
helps enhance existing quasi-periodic components in this sig-
nal when they are corrupted by artifacts and noise. The basic
idea of PRSA is the averaging of segments of y. These seg-
ments are symmetric regarding to so-called anchor points,
samples at which the instantaneous phase of the signal is
close to zero. Therefore, the averaging process removes
correlated or nonperiodic components of the signal (such as
noise and artifacts) while the quasi-periodic components are
enhanced.

In the following, the simplest version of PRSA is de-
scribed [10]. The steps of the PRSA method are illustrated in
Fig.1. The anchor points correspond to the increases in the
signal y (Fig.1(b)), i.e. instants n such that

Yn > Yn—1- (1)



Assuming a total of M anchor points indexed by n,,, m =
1,...,M, segments of length 2L 4+ 1 are centered on these
anchor points (Fig.1(c-¢)),

[yllm—Lvynm—L—&-l yer sV s Yy +L—1 7yn,,,+L] . (2)

All these segments are averaged, which leads to the PRSA
signal y,

1 M
Vo= M 2 Vimat, forl=—L —L+1,. 3)

m=1

The ‘PRSA transform’ f’q is obtained by evaluating the dis-
crete Fourier transform (DFT) of the PRSA signal (3)

2L

q— ny L€ - ”QZ forq 0717 7Q_17 (4)
(=0

where % is the discrete frequency and Q is the number of
samples in the DFT.
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Figure 1: Principle of PRSA: (a) signal y, = sin(270.14n), (b)
Anchor points, (c)-(e) Segments of length 2L + 1 = 61 centered on
anchor points, (f) (left side) PRSA signal J; (3), (center) squared
modulus of PRSA transform |I~’q|2 (4) and (right side) signal spec-
trum.

When the signal is corrupted by noise and artifacts, the
potential quasi-periodic components which are hidden in
a classical Fourier transform of the signal y, appear more
clearly using f/q (4). This is illustrated in Fig.2 for a simula-
tion example. The signal considered is the sum of two sinu-
soids at frequencies 0.23 Hz and 0.29 Hz. It is contaminated
by an additive white Gaussian noise, an impulsive noise and
two intermittent frequency modulated components.

As can be observed, the peak frequency at 0.29 Hz is
clearly enhanced using the PRSA method (Fig.2(c)) while
this peak is hidden in the classical signal spectrum (Fig.2(b)).
Other examples illustrating the potential of the PRSA as a
tool to improve the estimation of existing periodicities are
provided in [12].

2.2 Time frequency representation based on the PRSA

This section re-introduces the PRSA-TFR, which highlights
frequency domain events and their time evolution [9]. We
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Figure 2: Enhancement of existing quasi-periodic components in
signals using PRSA method: (a) studied signal, (b) signal spectrum
and (c) squared modulus of PRSA transform |¥,|? (4).

examine a signal {x;}r—o__x—1 by locally applying PRSA
over a moving window, with K the total number of samples.

Let us consider a sequence {Xj_g,+1,Xk—K,+2:--- Xk}
obtained from the signal using a window of length K,,. We
denote by %, the PRSA of this sequence and by /\N’k’q its
PRSA transform defined using (3) and (4) by:

for{=—-L,—L+1,...,L, ®)
forg=0,1,....,0—1, (6)

where, for reasons of clarity, the considered sequence is lo-
cally named y: vy = Xxp_g,4+n forn=1,2,... K.

By repeating the procedure for all £k = K,,,...,K — 1,
a time-frequency representation which describes the time-
evolution of the PRSA spectrum is obtained in analogy with
the short-time Fourier transform and the spectrogram:

Time x Frequency — PRSA-TFR
5 2
(k ) q) !Xk,q | :

Figure 3 displays both the PRSA-TFR and spectrogram of
the simulated signal of Fig.2(a). One can see that with the
PRSA-TFR the impulsive noise level is decreased and the
two constant frequencies of the periodic components are en-
hanced.
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Figure 3: PRSA-TFR (left column) versus spectrogram (right col-
umn) of the simulated signal of Fig.2(a).

2.3 PRSA-TFR probability density function

To define the pdf of the PRSA-TFR, we proceed in analogy
with that of the spectrogram. In [13, 14], the pdf of spec-
trogram coefficients obtained by the squared modulus of a
discrete Fourier transform is studied. The spectrogram of
unit and zero-mean white Gaussian noise, constructed using
an infinite rectangular window follows a chi-squared y? law
with 2 degrees of freedom.

Let us consider unit and zero-mean white Gaussian noise y,



¥ ~ N(0,1). The probability distribution of the PRSA j of y
can be approximated by (proof in Appendix A):

vo o~ N(0,) Vee{-L—L+ 1, L\ {-1,0},

5 1 1

Yo ~ N NV /%M ) ®)
5 -1 Va1

Ja ~ N ﬁ7\/§47 )

where M is the number of anchor points. Figure 4 shows the
histograms of 20000 simulated samples of y_1, J45, and
for a window length L = 65. The approximations (8) (:) are
close to the pdfs (-) evaluated using the histograms.

Figure 4: Pdfs of PRSA samples 7_1, 745 and 7. Pdfs obtained
by applying PRSA (L = 65) to a simulated unit-variance and zero-
mean white Gaussian noise. The approximations (8) (:) are super-
imposed to the pdfs (—) evaluated through simulated samples.

The covariance between the PRSA samples is also approxi-
mated by (see appendix A):

{ CovGe,.5) = g if (6,6)=(=1,0) or (0,~1)
= 0, otherwise.

©
Let us now examine the pdf of the squared modulus of the
PRSA transform S[g] = |)~’q‘2 (4). S[g] is written for Q >
2L+ 1 as:
)
Slg] = |Yq|

=Si[q| +583[g], for ¢=0,...,0—1, (10)

where

2L 21al 2L 2 Vi
Silgl =Y -1 cos< 49 ) and  S>[q] :ng_Lsin< | >.(11)
=0 Q =0 Q

S1[g] and S»[g] are random variables. The closed forms of
their means mg, [¢] and mg,[g] are evaluated using (8) and

” ms lg] = f% sin(%) sin(w
ms,lq] = % sin( )COS<7r(2LQl)q%' (12)
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Their variances o3, [¢] and o5 [g] are:

0'52] g = % [l +cos(4”_0"]') ’D(qﬁL,Q)] - ,%M {sin(%)sin( ’"1(2571))]27
5522[‘1] _ (2%1) [17605(47814)@((]!7@]7;7’“{Sin<%)cos(w(2§4))]z7

(13)

where D(q,L,Q) is the function

sin ( 224CLHD)
_ (g
D@L0) = ()

Ps;.5,[q] = Cov(Si[q],S2[q]) is calculated as:

Dirichlet kernel

The covariance coefficient

pssld = (2g;;l>sin(4LQ’1L)D(q,L,Q)+ﬁ[sin(%)]zsin(%).
(14)

We indicate that in equations (13) and (14), some terms can
be neglected leading to the following simplification:

a3 ldl ~  ELED 4 cos MTqL D(q,L,0)|,
oild o~ U N—cos(ME)D(gL,0)], (1)
pS[Sz[q] ~ 0.

Figure 5 shows that the theoretical means (12) and variances
(13) of both S} [¢] and S»[g] coincide with the means and vari-
ances evaluated on the PRSA of simulated unit-variance and
zero-mean Gaussian noise.
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Figure 5: (Top) Theoretical means (12) (—o) of Sy [g] and S»[g] co-
incide with the simulated ones (..e). (Bottom) Theoretical variances
(13) (-) of Si[g] and S5 [g] coincide with the simulated ones (-.-).

In Fig.6, the histograms of both S| [¢] and S5 [g] are illustrated.
These histograms are well fitted by Gaussian pdf curves.
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Figure 6: Pdfs of Si[g] and Sy[g] (10) illustrated for M = 100,
2L+ 1 =63 and Q = 64: Gaussian fits (-) are superimposed to
the histograms of S} [¢] and S;[g] which are simulated using unit-
variance zero-mean Gaussian noise.

Indeed, according to the strong law of large numbers, both
S1]g] and S>[g] which are the sum of 2L + 1 samples with
2L + 1 > 33, can be assumed to be asymptotically Gaussian
random variables:

Silg] ~N(0,03,[q]) and  S:[g] ~N(0,05,[q]). (16)
By taking into account (15) and (16), and according to [13],
the pdf of the squared modulus of the PRSA transform
(Slq] = S3[g] + S3[q] (10)) is approximated by:

M Io(bSq])
(2L+1) 1 —ﬂz(q,L,Q)

pdfs (|%l* =Sla]) =

el (17)



with a! = B5e) (1 -D2(q,L,0)). b= alD(g,L, 0)| and
Iy the zero-order modified Bessel function. This distribution
collapses with a y? distribution if O = 2L + 1 and for high
frequencies (large ¢):

pdfs (%] = Sla)) = M5, (1s)

and for ¢ = 0, the S[g] follows a x> law with one degree of

1
freedom [13]: pdf5(|)~(,,,o|2:S[O]) :MS[O]T;EM@.

In the following, we fix O = 2L + 1 and hence the pdf of
the PRSA-TFR coefficient (7) is assumed to be a > law (18)
with two degrees of freedom [13] for ¢ # 0. It is also worth
noting that pd fs was theoretically derived for a PRSA-TFR
of white Gaussian noise while and other distributions should
be more adapted to take into account the overlapping and
windowing effects when calculating the PRSA-TFR.

The theoretical windowing and zero-padding effects are
studied for the spectrogram in [15], while the case of signal
presence (noncentral Gaussian variables) is presented in [14].
Indeed, this last case has no exact pdf formulation and the au-
thors suggest a geometric approach to evaluate the spectro-
gram pdf. These studies can also be addressed for the PRSA-
TFR pdf but this is out of the scope of this paper.

3. HRV DATA SET

This section presents the procedure for generating synthetic
HRYV signals and specifies the characteristics of the real HRV
data.

3.1 Synthetic HRYV signals

Realistic synthetic HRV signals at supine and after tilt can
be generated using the HRV AR-PSD model described in

2
[8]: PSD(f) = >

————+——. The true model order p, the
|i_gax /]

AR model coefficients a; and the variance 67 of the driving
zero-mean white noise are reported in Table 1 for a sampling
rate of 1 Hz. We add a very low frequency trend, additive
white Gaussian noise (AWGN) and impulsive noise to the
simulated signals in order to obtain real-like artificial HRV
signals.

Table 1: Cocfficients and noise variance of the AR models.

Coeff. ay a; as ay as ag ar
Supinel  -1.6265 8849 -1.8327 1.2970 -0.7758 0.4133 -0.2136
Tilt 1 -1.8149 1365 -2.1703 1.7194 -0.9221 0.5311 -0.3262

o7
Supine 404 10-°
Tilt 13710°¢

3.2 Real HRV signals

HRYV real data are collected from experiments in 11 male cy-
clists (age 23 (4) years; height 191.1 (3.4) cm; body mass
69.3 (2.5) kg; all values are mean (standard deviation)) dur-
ing a classical stand-test by means of a Holter device at a
sampling frequency equal to 1000 Hz.

4. DISTANCE MEASURE

We propose to evaluate the deviation of the pdf of the PRSA-
TFR of HRV recorded during both supine and tilt positions

from that of an iid Gaussian noise, the aim being to discrim-
inate HRV changes between both positions based on this de-
viation. In the following, we describe the steps to measure
this deviation. First, we calculate the PRSA-TFR coeffi-
cients for the centered and normalized HRV time-series with
Q = 2L+ 1 for both positions. We then evaluate the PRSA-
TFR pdfs. These pdfs, experimentally obtained, are com-
pared to the pdfs pdfs (18) using the Battacharya distance.
Actually, to evaluate the deviation between two pdfs f; and
/>, the Battacharya (B) distance &p is defined by:

BUhls) = _1og</0°°mds)_ (19)

5. RESULTS AND DISCUSSION

In order to ascertain the potential of the PRSA-TFR, 1000 re-
alizations of realistic artificial HRV signals are initially used
for each considered SNR (SNRs are varying from 5 to 30
dB). The results are compared to those obtained by the Yule-
Walker AR spectral method, the true model order p = 7 be-
ing assumed known for this latter method. Both methods are
then tested on real HRV data to demonstrate consistency with
the simulated results. PRSA-TFR of the (centered and nor-
malized) HRV are evaluated using sliding windows of length
K, =100 and PRSA length 2L + 1 = 33.

Two measurements are evaluated and compared:

’1og ( Power Ratio L/ HF ) ‘ for the Yule-Walker AR spec-

Power Ratio LF /HF

supine

tral method and ’10g (

defined by (19).

Figure 7 displays the results for the two methods. By
comparing these results one can see that for SNR equal 5
and 10 dB the proposed method which contrary to the clas-
sical one does not assume fixed spectral bounds, exhibits the
same capacity as the classical one. For higher SNR values,
the classical method performance is slightly higher than that
of PRSA-TFR. However it is important to remind that the
classical method performance depends on selecting the ap-
propriate order of the AR model, and here it is assumed to
be known. When the minimum description length criterion
(MDL) is used to determine the model order [16] before ap-
plying the classical method the results worsen.

A deeper performance study of the PRSA-TFR based on
the choice of the length L and the sliding window K, is also
important to determine the limitations regarding the PRSA
method. This study is out of this paper scope.

553”’/’ ) ‘ for the PRSA-TFR, &g being

Bsupine

6. CONCLUSION AND PERSPECTIVES

In the present paper, we derive the theoretical pdf of PRSA-
TFR for Gaussian white noise. The PRSA-TFR is a new time
frequency representation based on the PRSA method which
allows for detection of the time variation of the most impor-
tant frequencies in HRV signals. The deviation of the PRSA-
TFR pdf of HRV signals during supine and tilt position from
that of iid Gaussian noise is measured using the Battacharya
distance. This measure helps characterize HRV signals under
supine and tilt positions. For instance, this measure does not
need to predetermine LF and HF spectral boudaries contrary
to classical spectral methods. In future studies, we aim to
study the effects of windowing on the PRSA-TFR pdf.
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Figure 7: Centered and normalized synthetic and real HRV: re-
sults obtained by (blue) Yule-Walker AR spectral method with LF
and HF bands defined as 0.04-0.15 Hz and 0.15-0.40 Hz respec-
tively, (red) PRSA-TFR method. PRSA-TFRs are evaluated using
a sliding window of length K,, = 100 and 2L + 1 = 33 whereas the
Yule-Walker AR spectral method is calculated using the true model
order p = 7. The boxes have lines at the lower quartile, median,
and upper quartile values. The whiskers are lines extending from
each end of the boxes to show the extent of the supine of the data.
Outliers are data with values beyond the ends of the whiskers.

A. DERIVATION OF THE PROBABILITY DENSITY
FUNCTION OF PRSA

Let us consider a unit centered Gaussian signal y and its
PRSA signal y;. Three cases are discussed according to the
definition of PRSA (3):

e Case 1 : ¢ # {0,1}, J can be assumed to be a sum
of M independent random variables drawn from a unit-
variance and zero-mean Gaussian Law. In this case, y is
a Gaussian random variable with zero mean and variance

g~ N(0, ) Vee[-LIN\{-1,0}.

e Case 2: ¢ =0, y is a sum of M anchor points. The
anchor points correspond to increases in thesignal, i.e.
instants » defined by (1).

e Case3: /¢ =—1,y_;is a sum of M points occurring just

before the anchor points. These M points correspond to
the decreases in signal, i.e. instants n — 1 defined by (1).

To approximate the pdfs of both jy and y_;, we need to
examine the pdfs and the statistics of the random variables
Z1 =y, and Z» =y, representing the anchor point and the
point occurring just before. Since y is a unit and zero-mean
Gaussian signal, according to the definition (1), the joint pdf
of both Z; and Z, is written:

equals ﬁ:

)
2+
e 2

1
Pz,.2,(21,22) = p Iizyezpy (21522) (20)
where I, .1 (z1,22) is a function defined by:
[s,eoy (21,22) = 1 if 22 <z and I,y (21,22) = 0
otherwise. Equation (20) satisfies the probability definition
J [ pz,2,(z1,22) dz1 dzy = 1. By marginalization of (20), the
pdf of Z; and Z, are obtained:

pz,(21) = \/12? e ? <1+erf<%>>7 @1
Pz, (22) = \/12? 87172 <1— erf(%)), (22)

where erf(z) = % Io e~ du is the Gauss error function.
The second-order statistics of both of Z; and Z, are derived
using (20), (21) and (22):

E[Z)] = —E[Z)] = ﬁ; Var[Zi] = Var[Zs) = 1 —

1.
T 23
E|Z1Z,] = 0; Cov[Z\, 2] = 23

1
r

The definition of PRSA (3) and the statistics (23) allow us
to evaluate the second-order statistics of both 7y and j_1, by
assuming independent anchor points:

Efpo] = —E[j-1] = 1,
Cov[f(),ﬂ,d = MLn:

Var[po] = Var[p_1] = %7

24
Since we assume both Jy and y_; are the sums of M indelgen2
dent random variables drawn from the pdfs (21) and (22) re-
spectively, the strong Law of Large Numbers can be applied.
Both 7, and j_; are then assumed to be Gaussian random
variables respectively:

~ 1 —1 ~ —1 —1

yONN<ﬁ’\/ﬁTn> and y,le(ﬁ7\/ﬁ/[—”>. (25)
We remind y and y_; are correlated random variables, so
their covariance is different from zero (24).
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