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ABSTRACT

Expectation maximization (EM)-based clustering is applied in many
recent multichannel source extraction techniques. The estimated
model parameters are used to compute time-frequency masks, or
estimate second order statistics (SOS) of the source signals. How-
ever, in applications with moving sources where the model param-
eters are time-varying, the batch EM algorithm is inapplicable. We
propose an online EM-based clustering of position estimates, where
the model parameters are estimated adaptively. A direct-to-diffuse
ratio-based speech presence probability is used to detect noisy ob-
servations and reduce diffuse and spatially incoherent noise. The
desired source signal is extracted by a multichannel Wiener filter
computed using SOS estimated from the time-varying model param-
eters. We show that the signal of a moving source can be extracted,
while reducing moving interferers and background noise.

Index Terms— expectation maximization, online learning, PSD
matrix estimation, distributed arrays

1. INTRODUCTION

Extracting one or more desired sources while reducing noise and in-
terferers is required in many modern communication systems. Sev-
eral recently proposed multichannel techniques make use of time-
frequency (TF) masks based on spatial features such as binaural
cues, signal vectors [1–3], or apply statistically optimal filters us-
ing SOS of the desired and the interfering signals [3–6]. The TF
masks or the SOS of the different signals need to be estimated from
the mixtures received at multiple microphones. The aforementioned
methods assume that speech signals are sparse in the TF domain,
implying that in each TF bin at most one source is dominant [7].

The main idea in probabilistic source segregation is to use a
probabilistic model describing the distribution of certain features ex-
tracted from the microphone signals when a particular source is dom-
inant. Common features include binaural cues [1], position [6] and
signal vectors [2, 3]. The index of the source that generates the ob-
servation is a hidden variable, leading to an unsupervised estimation
problem. The expectation maximization (EM) algorithm is a com-
monly used tool to deal with unsupervised estimation and incom-
plete data [8]. A position-based source segregation method which
makes use of the EM algorithm was proposed by the present authors
in [6], where probabilistic TF masks were used to compute the SOS
and separate the different source signals by applying multichannel
Wiener filters (MWFs). Nevertheless, a drawback of the EM-based
approaches is that they require a training phase, and that the model

∗A joint institution of the University Erlangen-Nuremberg and Fraun-
hofer IIS, Germany

parameters can not be adapted once the EM algorithm has converged.
This is a limitation in scenarios where the position of the sources is
time-varying. In such cases, the model parameters are time-varying
as well and need to be adapted online.

Online learning of model parameters using the EM algorithm
is commonly used in video processing [9, 10]. For instance, adap-
tive Gaussian mixtures allow for model adaptation by computing the
sufficient statistics within short temporal windows and continuously
updating the model parameters. The online EM variants do not re-
quire a training phase and although they represent noisy approxima-
tions of their batch counterparts, they exhibit faster convergence, as
updates are done for each incoming data sample. For details about
online EM variants the reader is referred to [11]. In this paper we ex-
tend the EM-based clustering of position estimates proposed in [6]
to a frame-wise online version. The position estimates for each TF
bin are computed by triangulating direction of arrival (DOA) esti-
mates obtained from at least two distributed microphone arrays. In
the E-step, the sufficient statistics in a short temporal window are
computed, while in the M-step the model parameters are updated in
the standard manner. Consequently, updates take place each frame
and the posterior probabilities used for power spectral density (PSD)
matrix estimation are correctly computed even for moving sources.
We demonstrate that for an appropriate temporal window size, the
algorithm adapts the model correctly whenever the location of a de-
sired source or an interferer changes. Eventually, the desired source
is extracted from the mixture by a MWF.

The paper is organized as follows: in Section 2 the signal model
is described. Section 3 provides an overview of the MWF and the
posterior probability-based estimation of the required PSD matrices.
The computation of posterior probabilities and the online clustering
of position estimates are described in Section 4. Section 5 provides
simulation results and a discussion.

2. SIGNAL MODEL

A setup is considered where M microphones from two or more dis-
tributed arrays capture an additive mixture of a desired source, unde-
sired spatially coherent interferers (e.g. interfering talkers) and back-
ground noise. The number of interferers I is assumed to be known,
nevertheless, their positions are unknown and possibly time-variant,
due to e.g. movement of an interferer. The position of the desired
source is also unknown and possibly time-variant. The signal at the
m-th microphone in the short-time Fourier transform (STFT) do-
main for time index n and frequency index k is given as

Ym(n, k) = X0,m(n, k) +

I∑
i=1

Xi,m(n, k) + Vm(n, k), (1)
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where X0,m and Xi,m, for i = 1, 2 . . . , I , are the spectral coeffi-
cients of the desired source signal and the i-th interferer, respectively
and Vm denote the spectral coefficients of the noise. In the follow-
ing, the time and frequency index are omitted wherever possible.

Using the vector notation y = [Y1 . . . YM ]T, the PSD matrix of
the random vector y is defined as Φy = E

[
y yH

]
, where (·)H de-

notes the conjugate transpose. The vectors v and xi and the matrices
Φv and Φx,i for i = 0, . . . , I are defined similarly. The different
source signals and the noise are assumed to be realizations of mutu-
ally uncorrelated zero-mean random processes, such that

Φy(n) = Φx,0(n, k) +

I∑
i=1

Φx,i(n, k) + Φv(n, k). (2)

The focus of this paper is computing an estimate of the desired
source signal X̂0,m at the m-th microphone. This is achieved by an
MWF that reduces the interferers and the noise while preserving the
desired source. In contrast to previous work [3,5,6], we address non-
stationary scenarios where the position of the desired source and the
interferers is varying.

3. OPTIMAL LINEAR FILTERING

To compute a statistically optimum linear filter with respect to a de-
fined criterion, the PSD matrices of the desired and the interfering
signals are required [4]. Using instantaneous parametric information
extracted from the microphone signals in the PSD matrix estimation
results in an informed spatial filter [6, 12, 13], where the PSD matri-
ces can be promptly updated to extract or reduce moving sources.

3.1. Multichannel Wiener filter

If the filter coefficients computed for the reference microphone m
are denoted by hm, an estimate of the desired signal is given by

X̂0,m(n, k) = hH
m(n, k) y(n, k). (3)

The noise-and-interference PSD matrix Φu is given by

Φu(n, k) =

I∑
i=1

Φxi(n, k) + Φv(n, k). (4)

The MWF coefficients are obtained by minimizing the minimum
mean squared error (MMSE) between X0,m and the estimate X̂0,m

leading to [4]

hm(n, k) =
Φ−1

u (n, k)Φx0(n, k)

1 + tr{Φ−1
u (n, k)Φx0(n, k)}

em, (5)

where tr{·} denotes the trace operator and

em = [0 . . . 0︸ ︷︷ ︸
m−1

1 0 . . . 0︸ ︷︷ ︸
M−m

]T . (6)

3.2. PSD matrix estimation

A common approach to PSD matrix estimation consists of perform-
ing recursive rank one updates based on the certainty that a given
signal is dominant at a particular TF bin. We introduce the follow-
ing hypothesis related to the activity of the sources at each TF bin

Hv : y(n, k) = v(n, k), indicating speech absence (7a)

Hi
x : indicating that the i-th source is dominant, i.e (7b)

y(n, k) ≈ xi(n, k) + v(n, k).

Consequently, speech presence is indicated by

Hx = H0
x ∪H1

x ∪ . . . ∪HI
x. (8)

Note that this estimation framework assumes that speech signals are
approximately sparse in the STFT domain [7].

In state-of-the-art approaches, the update is controlled by the
posterior probability of the relevant hypothesis [3, 14, 15]. In this
manner, for a chosen averaging constant 0 < α̃v < 1 the noise PSD
is updated as follows

Φ̂v(n) = αv(n) Φ̂v(n− 1) + [1− αv(n)] y(n)yH(n), (9)

where αv is computed by the multichannel speech presence proba-
bility (SPP) p[Hx |y] according to

αv(n) = p[Hx |y(n)] + α̃v (1− p[Hx |y(n)]) . (10)

Similarly, to compute the PSD matrix of each source, we use the
probabilities p[Hi

x |y]. Let the PSD matrix Φxi+v be defined as

Φxi+v = Φxi + Φv. (11)

Using a recursive update rule as in (9), its estimate is given by

Φ̂xi+v(n) = αx(n) Φ̂xi+v(n−1)+[1−αx(n)] y(n)yH(n) (12)

where for a chosen averaging constant 0 < α̃x < 1

αx(n) = 1− p[Hi
x |y(n)] + α̃x p[Hi

x |y(n)]. (13)

Eventually, PSD matrices of the sources are obtained by

Φ̂xi = Φ̂xi+v − Φ̂v. (14)

The remaining task is to estimate the posterior probabilities used
in (10) and (13) by exploiting parametric information extracted from
the microphone signals.

4. ESTIMATION OF POSTERIOR PROBABILITIES AND
ONLINE CLUSTERING

The posterior probability that the i-th source is dominant given the
current observation y can be decomposed as

p[Hi
x |y] = p[Hi

x |y,Hx] · p[Hx |y], (15)

where the first factor is the probability that the i-th source is domi-
nant, conditioned on speech presence, and the second factor repre-
sents the SPP, which can be computed using the estimator proposed
in [16]. The computation of these probabilities is detailed in Sec-
tons 4.2 and 4.1, respectively. To compute p[Hi

x |y,Hx], the present
authors in [6] used position-based probabilities such that

p[Hi
x |y,Hx] ≈ p[Hi

x | Θ̂,Hx], (16)

where Θ̂ is the estimated position vector in a certain TF bin. The full
band distribution of Θ̂ given that speech is present, was modeled by
a Gaussian mixture (GM) as

p[Θ̂ |Hx] =

I∑
i=0

πi N
(
Θ̂;µi,Σi

)
(17)

where πi denotes the i-th mixing coefficient and N
(
Θ̂;µi,Σi

)
denotes a Gaussian distribution with mean µi and covariance ma-
trix Σi. If the mixture parameters are known, the required posterior
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probabilities can be computed as

p[Hi
x | Θ̂,Hx] =

πi N
(
Θ̂;µi,Σi

)
∑I

i′=0 πi′ N
(
Θ̂;µi′ ,Σi′

) . (18)

In Section 4.2, we propose a frame-wise online EM-based method to
estimate the GM parameters.

4.1. Direct-to-diffuse ratio (DDR)-based SPP estimation

In order to detect TF bins where a speech source is present we em-
ploy the DDR-based SPP estimator proposed in [12], to compute
p[Hx |y] required in (15). Therefore, the source signals that are co-
herent across the arrays are detected and do not leak into the noise
PSD matrix estimate. Moreover, in order to improve the estimator at
low frequencies where the DDR is overestimated due to small inter-
microphone distances, each frame is subdivided into two frequency
bands and the ratio of the two DDRs is compared. Subsequently, a
binary mask is computed which is equal to zero if the ratio of direct-
to-diffuse ratios (DDRs) is larger than a threshold, and one other-
wise. Eventually, the a priori speech absence probability (SAP) as
computed in [12] is multiplied by the binary mask. This modification
improves the robustness of the subsequent online clustering.

4.2. Online EM clustering of source posteriors

In [6], the GM parameters P = {πi,µi,Σi, . . .} were computed by
a batch EM algorithm using a training set of R TF bin-wise obser-
vations D = {Θ̂1, . . . Θ̂R}. In the E-step of the algorithm, a set of
sufficient statistics is computed based on the current parameters

Pi =

R∑
r=1

p[Hi
x | Θ̂r;P] (19a)

Mi =

R∑
r=1

p[Hi
x | Θ̂r;P] · Θ̂r (19b)

Si =

R∑
r=1

p[Hi
x | Θ̂r;P] · (Θ̂r − µi)(Θ̂r − µi)

T (19c)

whereas in the M-step the mixture parameters are updated as

µi = Mi/Pi, Σi = Si/Pi, πi = Pi/

I∑
i′=0

Pi′ . (20)

The goal in this paper is to model the short-term distribution in
a moving temporal window, hence allowing the model to be time-
varying and applicable to moving sources. To achieve this, we adopt

Algorithm 1 Online clustering of bin-wise position estimates

1: for each incoming frame n do
2: Compute the SPP p[Hx | Θ̂(n, k)] for all frequencies k
3: Form the set Kn = {k | p[Hx | Θ̂(n, k)] > pmin}
4: if Kn 6= ∅ then
5: E-step: compute (21) with the last L frames for which
6: Kl 6= ∅, where l denotes the frame index

7: M-step: update parameters P(n− 1) using (20)
8: end if
9: Evaluate (18) with the current parameters P(n)

10: end for

Parameter
estimation

SPP

- E-step
- M-step
- Posteriors

Position

DDR

PSD
matrices
estimation

Wiener
filter

y(n, k) X̂0,m(n, k)

Fig. 1. Proposed online clustering framework for source extraction.

x [m]

y
 [
m

]

BA

A B

Fig. 2. Simulated scenario. The dotted lines illustrate the source
trajectories. The crosses represent the array locations.

an approach proposed in the context of video processing [9, 10],
where parameter updates take place for each incoming data sample
and no training phase is required. Here, we propose a frame-wise on-
line EM approach where the parameters are updated each time frame
using the position estimates over all frequencies in that frame. In the
E-step, the sufficient statistics are computed using position estimates
from the L most recent frames. In this manner, at time frame n the
sufficient statistics are given by

Pi(n) =

n∑
n′=n−L+1

∑
k

p[Hi
x | Θ̂(n′, k);P(n− 1)] (21a)

Mi(n) =

n∑
n′=n−L+1

∑
k

p[Hi
x | Θ̂(n′, k);P(n− 1)] · Θ̂(n′, k)

(21b)

Si(n) =

n∑
n′=n−L+1

∑
k

p[Hi
x | Θ̂(n′, k);P(n− 1)]

×
(
Θ̂(n′, k)− µi(n− 1)

)(
Θ̂(n′, k)− µi(n− 1)

)T

(21c)

The M-step is done as in (20), by using the short-term statistics given
by (21) instead of the batch statistics given by (19) to obtain the
new parameters P(n). The proposed algorithm is summarized by
Algorithm 1 and the overall source extraction framework used in
this paper is illustrated in Figure 1.

5. EXPERIMENTAL RESULTS

The proposed framework was evaluated using a simulated micro-
phone signals. The signals were obtained as a sum of clean speech
signals convolved with simulated room impulse responses [17], such
that the source trajectory is sampled and for each point the impulse
responses are recomputed and convolved with the clean speech sig-
nals. A diffuse babble noise signal with a segmental speech-to-
noise ratio of 17 dB, and uncorrelated sensor noise with a segmental

3
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150 350 650

150 350 650

(a) Scenario A-B (speed 1x)

150 350 650

150 350 650

(b) Scenario A-B-A (speed 2x)

Fig. 3. Online EM results. Top plots: T60 = 0.2 s. Bottom plots: T60 = 0.35 s. The numbers in the bottom left corner denote the time frame
indices. The array locations are marked by a plus sign. The interior of each ellipse contains 85% probability mass of the respective Gaussian.

time (s)

[m
]

time (s)

x coordinate y coordinate

(a) Scenario A-B (speed 1x)

time (s)

x coordinate y coordinate

time (s)

(b) Scenario A-B-A (speed 2x)

Fig. 4. Tracking accuracy of the EM algorithm. The x and y coordinates of the true source position and the means of the respective Gaussian
distributions are plotted over time.

T60 = 0.2 s T60 = 0.25 s T60 = 0.3 s T60 = 0.35 s T60 = 0.4 s
A-B A-B-A A-B A-B-A A-B A-B-A A-B A-B-A A-B A-B-A

Si,x [dB] 2.00 1.47 2.15 1.20 2.25 1.68 2.43 2.00 2.42 1.81
So,v − Si,v [dB] 4.50 3.48 4.00 3.21 3.47 2.85 3.00 2.61 2.50 2.70
So,x − Si,x [dB] 9.70 9.12 8.15 7.96 6.55 6.27 5.70 5.37 4.66 5.35
∆-PESQ 0.70 0.68 0.57 0.49 0.45 0.40 0.35 0.34 0.30 0.29
νsd 0.07 0.16 0.11 0.23 0.16 0.27 0.24 0.30 0.29 0.32

Table 1. Performance of the MWF for Scenarios A-B and A-B-A.

speech-to-noise ratio of 40 dB were added to the microphone sig-
nals. The STFT frame length was 1024 samples, with 50% overlap
and sampling frequency of 16 kHz. A scenario with two sources was
simulated, employing two uniform circular arrays with three omni-
directional microphones each, a diameter 2.5 cm and an inter-array
spacing of 1.5 m. The DOA was computed for each array using the
estimator proposed in [18], and the position was computed by a trian-
gulation of the DOA vectors. For the given array diameter, the DOA
estimates over the used frequency range are not affected by spatial
aliasing. In order to increase the algorithm robustness to noisy ob-
servations, in addition to discarding positions estimates where the
SPP is below pmin = 0.85 from the sufficient statistics computa-
tion, positions within a radius of 20 cm around the array centers are
discarded as well. The averaging constants in (10) and (13) were
αv = 0.9 and αx = 0.8. The length L of the temporal window for
online clustering was 40 frames (≈ 1.3 s). The EM algorithm is ini-
tialized such that the two means are placed on the axis of symmetry
between the two arrays, in positions (0.4, 0) and (0.4,-1), the mix-
ture coefficients are set to 0.5 for both sources, and the covariance
matrices are scaled identity matrices. In the following, we evaluate

the tracking performance of the online EM algorithm and the source
extraction performance of the MWF for reverberation times T60 in
the range from 0.2 to 0.4 seconds and two different speeds of the
moving sources. The scenario is illustrated in Fig. 2, where in a
first experiment, both sources move from positions A to positions
B, simultaneously (this scenario is referred to as A-B), whereas in a
second experiment, each source starts from position A, goes to po-
sition B, and comes back to position A, resulting in two times faster
movement (this scenario is referred to as A-B-A). The two sources
are of approximately equal power. A reference microphone for the
MWF is chosen from the array which is closer to the current posi-
tion estimate of the desired talker (i.e., the mean of the respective
Gaussian distribution).

5.1. Performance measures

We denote the input desired speech to diffuse plus sensor noise ratio
by Si,v , the input desired speech to undesired speech ratio by Si,x,
and the corresponding output values So,v and So,x [4]. The source
extraction performance at the output of the MWF is evaluated in
terms of

4
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- Desired-speech-to-noise ratio improvement So,v - Si,v .
- Desired-to-undesired speech ratio improvement So,x - Si,x.
- Speech distortion index νsd [4].
- PESQ score improvement [19], denoted by ∆-PESQ.
The performance measures are computed segmentally, using non-
overlapping frames of 20 ms, where only frames with input SIR or
SNR between -40 dB and 40 dB were considered. The final values
are obtained by averaging the segmental values in the logarithmic
domain, except the speech distortion index which is averaged in the
linear domain.

5.2. Results

The output of the online EM algorithm at different time instants is
shown in Figure 3 for two different values of T60, where it is visible
that the distribution of position estimates associated with a particu-
lar source estimated with good accuracy. As expected, the variance
of the Gaussian distribution associated with a particular source in-
creases with increasing reverberation time and increasing the speed
of the moving sources. Nevertheless, the mean of the distribution
represents a good estimate of the true source location at all times.
This is corroborated by the plots in Fig. 4, where the x and y coordi-
nates of the true source position and the estimated means are plotted
over time, for different values of T60. The values of the estimated
source position in the first second represent the initial values of the
EM algorithm, which are not updated until a sufficient number of
L frames (in this case 40 frames) are processed. After this initial
latency, the parameters are updated for each incoming frame.

The results from the objective performance evaluation are sum-
marized in Table 1. Although the tracking performance was simi-
lar for the different speeds and reverberation levels, the quality of
the extracted source signal decreases with increasing reverberation
levels . Nevertheless, increasing the speed of the sources by a fac-
tor of two leads to only slightly worse performance (except for the
desired-speech-to-noise ratio and the desired-to-undesired speech ra-
tio improvement at T60 = 400 ms, where slightly better results were
achieved in Scenario A-B-A than in Scenario A-B), indicating that
the tracking algorithm adapts the model parameters quickly to the
new scenario. The most significant performance difference for the
different speeds is in the speech distortion index νsd. Developing
measures to keep the distortion index low and less susceptible to es-
timation errors in the PSD matrices is a topic of ongoing research.

6. CONCLUSIONS

An online EM-based clustering of position estimates in the TF do-
main was proposed, with application to power spectral density ma-
trix estimation of moving sources in the presence of background
noise. The algorithm was evaluated in a double-talk scenario, where
two sources are constantly moving. The tracking and the source ex-
traction performance was evaluated for different reverberation lev-
els and different speeds of the moving sources. The algorithm was
able to track the source position changes and accurately update the
model parameters, resulting an extracted desired source signal with
low distortion and good interference reduction. Nevertheless, al-
though the tracking performance was satisfactory, a decrease in the
source extraction performance was observed for increasing reverber-
ation times. Future work includes evaluation in scenarios with more
sources, and with different spatial filters which could lead to better
noise and interference reduction in environments with higher rever-
beration levels.
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[7] Ò. Yilmaz and S. Rickard, “Blind separation of speech mixture
via time-frequency masking,” IEEE Transactions on Signal
Processing, vol. 52, pp. 1830–1847, 2004.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,” Jour-
nal Royal Statistical Society, vol. 39, no. 1, pp. 1–38, 1977.

[9] D.-S. Lee, “Online adaptive Gaussian mixture learning for
video applications,” in Proc. Statistical Methods in Video Pro-
cessing, Prague, Czech Republic, May 2004.

[10] N. Friedman and S. Russel, “Image segmentation in video se-
quences: a probabilistic approach,” in Proc. 13th Conf. Uncer-
tainty in Artificial Intelligence, 1997.

[11] R. M. Neal and G. E. Hinton, Learning in Graphical Models,
chapter A view of the EM algorithm that justifies incremental,
sparse, and other variants, Mit Pr, 1998.

[12] M. Taseska and E. A. P. Habets, “MMSE-based blind source
extraction in diffuse noise fields using a complex coherence-
based a priori SAP estimator,” in Proc. IWAENC, Sept. 2012.

[13] O. Thiergart and E.A.P Habets, “An informed LCMV filter
based on multiple instantaneous direction-of-arrival estimates,”
in Proc. IEEE ICASSP, 2013.

[14] I. Cohen, “Noise spectrum estimation in adverse environments:
Improved minima controlled recursive averaging,” IEEE
Trans. Speech Audio Process., vol. 11, no. 5, pp. 466–475,
Sept. 2003.

[15] T. Gerkmann and R. C. Hendriks, “Noise power estimation
base on the probability of speech presence,” in Proc. IEEE
WASPAA, New Paltz, NY, 2011.

[16] M. Souden, J. Chen, J. Benesty, and S. Affes, “Gaussian
model-based multichannel speech presence probability,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 18, no. 5, pp. 1072–
1077, July 2010.

[17] E. A. P. Habets, “Room impulse response generator,” Tech.
Rep., Technische Universiteit Eindhoven, 2006.

[18] S. Araki, H. Sawada, R. Mukai, and S. Makino, “A novel blind
source separation method with observation vector clustering,”
in Proc. IWAENC, 2005.

[19] A. Rix, J. Beerends, M. Hollier, and A. Hekstra, “Perceptual
evaluation of speech quality (PESQ) - a new method for speech
quality assessment of telephone networks and codecs,” in Proc.
IEEE ICASSP, 2001, pp. 749–752.

5


