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ABSTRACT

Link adaptation in multiple user multiple-input multiple-output or-

thogonal frequency division multiplexing communication systems is

challenging because of the coupling between user selection, mode

selection, precoding, and equalization. In this paper, we present a

methodology to perform link adaptation under this multiuser setting,

focusing on the capabilities of IEEE 802.11ac. We propose to use a

machine learning classifier to solve the problem of selecting a proper

modulation and coding scheme, combined with a greedy algorithm

that performs user and spatial mode selection. We observe that our

solution offers good performance in the case of perfect channel state

information or high feedback rate, while those scenarios with less

feedback suffer some degradation due to inter-user interference.

Index Terms— Multiuser MIMO-OFDM, Link Adaptation, Ma-

chine Learning

1. INTRODUCTION

Link adaptation (LA) is the process of selecting transmission param-

eters (usually modulation and coding scheme - MCS) in a wireless

link to maximize some throughput metric while meeting some reli-

ability constraints, usually expressed in terms of frame error rates

(FER). In multiple-input-multiple-output (MIMO) orthogonal fre-

quency division multiplexing (OFDM) systems, this adaptation is

challenging because of the difficulty of predicting the FER per-

formance as a function of the channel state information (CSI). As

data is jointly coded and interleaved across multiple carriers and

substreams, each one experiencing a different signal to noise ratio

(SNR), it is hard to calculate (with low complexity) the probability

of unsuccessful decoding.

To enable practical LA, some FER prediction metrics have been

proposed in the literature [1–3]. These metrics are usually based

on a generalized average model that maps the set of all SNRs (one

for each carrier and spatial stream) to one effective SNR. This SNR

value is usually defined as the necessary SNR for an additive white

Gaussian noise (AWGN) channel to experience the same FER as

the fading channel under study. Unfortunately, these unidimensional

metrics may not be able to fully characterize the channel and may

not provide a good approximation to the actual FER of the system.

∗This work was performed while the author was visiting the Wireless Net-

working and Communications Group at The University of Texas at Austin.

Work by A. Rico-Alvariño supported by a Fundación Pedro Barrié de la

Maza graduate scholarship. Work by R. W. Heath Jr. supported by the Na-

tional Science Foundation Grant 1218338 and by the Army Research Labo-

ratory contract W911NF-10-1-0420.

Machine learning is one mathematical tool that can be used to

develop practical LA methods [4–6]. Using machine learning, the

LA optimization is framed as a classification problem, with the class

boundaries determined from performance related data. The learning

process can be performed offline [4] or online [7]. As the system

experiences different channel states and FER values, the learning al-

gorithm incorporates this information into its performance database,

and is able to infer the FER value for the future channel states. A

general benefit of using learning is that the impact of practical im-

pairments that may be not explicitly modeled, e.g., non-Gaussian

noise or non-linearities, can still be incorporated [8]. Prior work

provided several approaches for LA in single user MIMO-OFDM

communication links. Multiuser MIMO (MU-MIMO) communica-

tion, as used in emerging commercial wireless systems like IEEE

802.11ac [9], was not considered.

In this paper, we present a LA algorithm suitable for MU-MIMO

communication focusing on the capabilities of IEEE 802.11ac. The

MU scenario is more challenging due to the coupling between user

selection, spatial mode selection, precoding and MCS selection. We

propose to use a machine learning classifier for MCS selection, a

greedy algorithm for user and mode selection, and exploit limited

feedback information to perform block diagonalization (BD) pre-

coding to remove inter-user interference. In our approach, this clas-

sifier is trained offline; online implementation is a subject of our cur-

rent research. We explore insights from MU-MIMO precoding with

scheduling [10] and LA in MIMO-OFDM systems [4] to develop

our solution. We also explore the effect of limited feedback CSI, and

conclude that the selection of a convenient feedback rate, specially

in high SNR environments, is critical for a good performance of the

proposed algorithm. Our approach is different from prior work in

several ways. LA methods in single-user MIMO [4] require running

the LA algorithm for different number of spatial streams, selecting

afterwards the mode leading to a higher throughput. In the more

general MU-MIMO case, this procedure degenerates into an exhaus-

tive search for the number of spatial streams for every user, which

is not practical. In [11] some solutions to the problems of dealing

with multiple users were proposed by exploring the linkage between

linear precoding (or beamforming) with limited feedback and MCS

selection. In this case, the results were limited to a multicast sce-

nario. Our paper considers MU-MIMO unlike [4] and deals with the

broadcast setting unlike [11].

Notation: A∗ denotes the Hermitian transpose of matrix A, AT

denotes the transpose of matrix A, [A]ij denotes the element in the

i-th row and j-th column of matrix A, IK denotes theK×K identity

matrix, 0K×N denotes the zero matrix of sizeK×N , A◦B denotes

the (entrywise) Hadamard product between matrices A and B, |A|
denotes the number of elements in set A, CK denotes the set of
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column vectors with K complex entries, and C
K×N denotes the set

of K ×N matrices with complex entries.

2. SYSTEM MODEL

Consider an N -carrier OFDM wireless network where a transmit-

ter equipped with Ntx antennas communicates with U users, U =
{1 . . . U}where the u-th user hasNrx,u receive antennas. At a given

time instant, the transmitter conveys information to a subset of the

users T ⊆ U . We will denote T = |T | for the sake of simplicity.

In a given time slot, as in IEEE 802.11ac, only the spatial multiplex-

ing strategy can be adapted; the concept of resource block present

in other standards like 3GPP long term evolution, which allows allo-

cating subsets of subcarriers to different users [12], is not supported.

We restrict our analysis to transmitters employing linear pre-

coders and receivers with linear equalizers. For a given carrier n,

su[n] ∈M
Lu

u is the Lu spatial streams modulated signal containing

the information for the u-th user (with Lu ≤ min{Ntx, Nrx,u}), be-

ingMu = {m1 . . .mM} the modulation for the u-th user (assumed

to be constant over all the spatial streams1), Fu[n] ∈ C
Ntx×Lu is the

transmit precoding matrix for the u-th user, Hu[n] ∈ C
Nrx,u×Ntx

is the flat fading MIMO channel from the transmitter to the u-th re-

ceiver, and Bu[n] ∈ C
Lu×Nrx,u and Gu[n] ∈ C

Lu×Lu are the

interference removal matrix and the linear equalizer applied at the

u-th receiver. We divided the receive processing into two different

matrices for simplicity in the treatment of the multiuser precoding:

the objective of Bu[n] is to reject the inter-user interference, while

the equalizer Gu[n] removes the intra-user interference. Finally,

nu[n] ∼ CN
(

0, σ2I
)

denotes the received noise vector at the u-

th receiver. With this, the post-processed signal at the u-th receiver

yu[n] ∈ C
Lu is

yu[n] = Gu[n]Bu[n]Hu[n]
∑

i∈T

1
√

P [n]
Fi[n]si (1)

+Gu[k]Bu[n]nu[n]

with

P [n] ,
∑

u∈T

tr (Fu[n]F
∗
u[n]) , (2)

the power normalization factor, and E (su[n]s
∗
u[n]) = ILu

. For the

sake of clarity, we define

Ĥu,i[n] ,
1

√

P [n]
Gu[n]Bu[n]Hu[n]Fi[n],

and wu[n] , Gu[n]Bu[n]nu[n], so

yu[n] = Ĥu,u[n]su[n] +
∑

i∈T \{u}

Ĥu,i[n]si[n] +wu[n] (3)

where it can be seen that the second and third terms correspond to

inter-user interference and noise, respectively.

The transmit signal for each of the T scheduled receivers is the

result of performing coding, interleaving and constellation mapping

operations on a stream of source bits. The MCS for the u-th user

cu is selected from a finite set of MCS C. The selected number of

spatial streams and MCS for the u-th user has an associated rate of

η (cu, Lu) bps.

1Although in IEEE 802.11n the use of different modulations in each spa-

tial stream was allowed, it was apparently not implemented in most commer-

cial devices, and finally discarded for 802.11ac.

In general, the probability that a frame is not correctly de-

coded at the u-th receiver (i.e., the FER), depends on the trans-

mit power, channel matrices, number of scheduled users, se-

lected MCS for the u-th user, selected modulation for the in-

terfering users, etc. Treating the noise and residual multi-user

interference as Gaussian, and assuming a linear receiver, it is

reasonable to write the FER of the u-th user pu as a function

of the the selected MCS cu and the post-processing SNR values

γu = [γu,1 [1] , . . . γu,Lu
[1] , . . . γu,Lu

[N ]]T , where

pu = FER (γu, cu) , (4)

and the post processing SNR of the u-th user in the i-th spatial stream

and n-th carrier defined as

γu,i[n] =

∣

∣[Du,u [n]]ii
∣

∣

2

[Ru[n]]ii
(5)

with

Ru[n] =
(

Ĥu,u[n]−Du,u[n]
)(

Ĥu,u[n]−Du,u[n]
)∗

+ (6)

+
∑

j∈T \{u}

Ĥu,j [n]Ĥ
∗

u,j [n] + σ2
Gu[n]Bu[n]B

∗
u[n]G

∗
u[n]

the covariance matrix of interference plus noise, and Du,u , Ĥu,u◦
ILu

. Based on the rate η and the FER p, we can define the through-

put of user u as

tu = (1− pu) η (cu, Lu) . (7)

3. PROPOSED LINK ADAPTATION ALGORITHM

The LA problem in the multiuser scenario is different from the

single-user scenario. In the single user case, the usual objective of

LA is to maximize the (unique) link throughput subject to a con-

straint on the FER. In the MU-MIMO case, each user has a different

rate, so the objective might be to maximize a function of the rates,

subject to a FER constraint p0 > 0 (assumed to be equal for all

receivers). We consider the sum rate as the performance objective

in this paper. In general, if we denote by t = [t1 . . . tU ] the vector

containing the throughput of all users, and by ν (t) ,
∑U

u=1
tu the

sum rate, the LA problem can be stated as

maximize ν (t)
subject to pu ≤ p0 u = 1 . . . U.

(8)

We will assume tu = 0, pu = 0 if u /∈ T to be consistent with our

approach, which involves scheduling a subset of the users. Note that

the LA problem can be modified to maximize other utility metric

than the sum rate just by defining ν (t) accordingly.

Trying to solve this problem directly is computationally in-

tractable. Besides the difficulty of obtaining a mathematical model

that maps the CSI to the FER pu, the number of design variables

is quite large and difficult to handle. For example, the set of active

users T , the streams per each active user Lu, the precoding ma-

trices Fu[n], the interference removal matrices Bu[n], equalizers

Gu[n] and MCS cu. We propose to divide this general problem

into three different operational blocks: MCS selection, Precod-

ing/Equalization and User and Mode Selection 2.

2Due to space constraints, some of the details of the link adaptation pro-

cedure are omitted. For further details see [13].
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3.1. MCS selection

The MCS selection block consists of a function µ that takes as input

the set of post-processing SNR values of user u, and number of spa-

tial streams Lu, and computes the higher MCS that meets the FER

constraint for those SNR values:

µ (γu, Lu) = argmax
c∈J

η (c, Lu) s.t. FER (γu, cu) ≤ p0. (9)

We use a machine learning inspired approach to solve (9). Essen-

tially, we classify features derived from the channel into the highest

MCS that meets the target FER constraint. Note that this is slightly

different from conventional machine learning in that we have a tar-

get average error rate, whereas machine learning usually involves

avoiding classification errors altogether. We will follow a super-

vised learning approach to solve this problem, which includes two

separated tasks: feature extraction and classification.

Feature extraction: In machine learning, there is a well-

known curse of dimensionality associated with larger dimensions

feature vectors requiring exponentially more training data [14].

Consequently there are benefits to reducing the dimensionality of

γu. To reduce dimensionality of the feature space, we exploit

insights made in [4] about performance in coded bit interleaved

MIMO-OFDM systems. In particular, it was recognized that per-

formance was invariant to subcarrier ordering and thus a reduced

dimension feature vector derived from certain post-processing SNRs

is sufficient to reliably predict performance. Therefore, we define

γ̃u =
[

γ̃u,1 . . . γ̃u,NLu

]T
as a vector formed by ordering γu in as-

cending order, from which we obtain our feature vector f = α (γ̃u)
by selecting a subset of the entries of γ̃u.

Classification: The objective of the classification task is to esti-

mate the highest MCS supported by the channel characterized by the

feature vector f . Following a similar approach as in [7], we have a set

of classifiers δc,L(f) that discriminate whether the current channel,

characterized by f , is going to support the transmission with MCS c
and L spatial layers while meeting the FER constraint. That is, we

have two classes: −1: MCS not supported, 1: MCS supported, so

our classifier is a function of the feature vector f that maps

δc,L : f → {−1, 1} .

For a given number of layers L, the overall classifier chooses the

MCS with a higher rate among those predicted to meet the FER con-

straint3. In other words, the selected MCS is

µ (γu, Lu) = argmax
c
{η (c, Lu)} s.t. δc,L(f) = 1 (10)

with f = α (γ̃u) the feature vector representing the SNR values γu.

The classifiers δc,L are built following a data driven approach

as follows: for each pair (c, L) we have a set of training samples

{(f1, v1) , (f2, v2) . . . (fM , vM )} such that the correct class for the

feature vector f i is vi ∈ {−1, 1}. The classifier is trained offline

with these samples so it can learn to classify other feature vectors.

The extension to online training and classification is a subject of

future work.

3.2. Precoding / Equalization

Given the subset of active users T and the number of streams per

user Lu, the problem of selecting the precoders Fu, interference re-

moval matrices Bu and equalizers Gu is not trivial. As the design

3Although in general this selection does not imply that the throughput is

maximized, for usual values of p0 and MCS granularity it does.

of precoders is independent for each carrier, we will drop the index

[n] in this section. For the sake of simplicity, we assume that the

precoders Fu and interference removal matrices Bu are obtained

using the BD technique [15] modified as in [16]. This low complex-

ity precoding removes the interference between the different users

but not the interference between streams associated to the same user.

The equalizers Gu can be chosen independently of Bu, and can

be obtained following a zero forcing or minimum mean squared er-

ror design. This procedure is chosen for its simplicity with respect

to capacity-achieving non-linear techniques, and for its small gap

with respect to capacity when used in conjunction with user selec-

tion algorithms [10]. Let Hu = UuΣuV
∗
u be the singular value

decomposition of Hu with the singular values in Σu arranged in de-

creasing order. Note that Uu ∈ C
Nrx,u×Nrx,u , Σu ∈ R

Nrx,u×Ntx

and Vu ∈ C
Ntx×Ntx . The matrix Bu is formed by taking the first

Lu columns of Uu (i.e., the left singular vectors associated with the

largest singular values). Let us denote H̃u , BuHu, and

H̄u ,

[

H̃
T

1 · · · H̃
T

u−1 H̃
T

u+1 · · · H̃
T

T

]T

. (11)

BD forces to choose precoders such that H̄uFu = 0K,Lu
∀u with

K =
∑

i∈T ,i 6=u Li.
The set of precoders meeting this constraint can be written as

NuPu, with Nu a basis for the nullspace of H̄u. We choose Fu as

the matrix containing the singular vectors associated to the largest

singular values of H̃uNu. Note that if the system is fully loaded

(
∑U

u=1
Lu = Ntx) then the nullspace of H̄u will have dimension

Lu and, therefore, Pu will be a square matrix. With this precoding

technique, the resulting MIMO channel is

yu = GuBuHuFusu +wu. (12)

Although we followed this precoding approach in our simulations,

other precoding designs could be used in the adaptation framework.

If we follow the feedback scheme proposed for IEEE 802.11ac,

the transmitter has only knowledge of a quantized version of the first

Lu right singular vectors of the channel, which are the preferred

transmit beamformers for Lu spatial streams, and the associated sin-

gular values. This information, however, suffices to calculate the BD

precoders and the corresponding SNR values.

3.3. User and mode selection

Performing optimal user and mode selection requires an exhaustive

search over all possible combinations of users and number of streams

per user. To overcome this issue, we propose a greedy approach,

similar to [17], where the layers are added one by one until the utility

function ν (t) does not increase. This algorithm has a complexity of

O
(

NtxU
)

, while the exhaustive search complexity is O
(

NU
tx

)

. The

greedy user and mode selection algorithm is described in Algorithm

1.

4. SIMULATION RESULTS

We have simulated the proposed LA algorithm using the IEEE

802.11ac reference physical layer [9] in a 20MHz channel with

800ns guard interval, zero forcing receive equalizers, FER constraint

p0 = 0.1, a 4-antenna transmitter and three 2-antenna receivers. Per-

fect CSI was assumed at the receiver, and different feedback rates

were considered for CSI acquisition at the transmit side. The only

CSI mismatch between transmitter and receiver is due to the finite

3
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Algorithm 1 Link Adaptation Algorithm

Lu = 0 ∀u
R ← 0
while

∑U

u=1
Lu < Ntx do

for Each user u with Lu < Nrx,u do

Calculate matrices Fv[n], Gv[n], Bv[n] for all users v, for

the spatial layers set {L1, L2 . . . Lu + 1 . . . LK} following

the procedure in 3.2.

Calculate post-processing SNR values γv∀v as in (5).

cv ← µ (γv, Lv) ∀v. {Calculate optimum MCS for all

users}
tv ← η (cv, Lv) ∀v {Calculate the corresponding rate}
Ru ← ν (t) {Utility metric if we incremented Lu by 1}

end for

j ← argmaxu {Ru} {User whose increment in Lu leads to a

higher rate}
ifRj ≥ R then

Lj ← Lj + 1
R ← Rj

else

Stop algorithm.

end if

end while

rate feedback channel, thus no time variation is assumed. In a re-

alistic setting, this would imply that the time variation is negligible

between the received feedback message and the actual transmission,

but relatively large between different transmissions so the learning

algorithm can explore different channel states. The training of the

classifiers δ was performed as follows: for each MCS and L value

we obtained training samples by simulating 200 different point-to-

point MIMO-OFDM channels, generated in the time domain as a

3-tap MIMO filter (each one with entries generated independently

following a CN (0, 1) distribution), and for 30 different noise levels

−10 log10
(

σ2
)

= {1, 2, . . . 30}dB, so the complete training set

size was 6000. The statistical distribution of the channel samples

is not to critical for the link adaptation performance as long as both

training and test samples follow the same distribution. We used a

support vector machine (SVM) classifier with a radial basis function

kernel; consequently the parameters of the kernal function C and γ
are adapted. We followed the usual procedure and perform K-fold

cross validation [18] with K=4 to obtain C and γ, and afterwards

train the classifier with the whole training set. The SVM classifier

was implemented using the LIBSVM library [19]. The feature vector

f was obtained from the set of ordered SNR by selecting 4 equally

spaced indexes, including the first and last ordered SNR values.

In general, feature space selection is one of the key factors for the

performance of classifiers, so determining whether the performance

of the proposed scheme is sensitive to feature selection or not is a

subject of future research.

We evaluated the performance of the proposed user selection and

link adaptation algorithm for different feedback rates present in the

IEEE 802.11ac standard. The limited feedback scheme present in

IEEE 802.11ac is based on the quantization of beamforming unitary

matrices using a Givens decomposition [20], and afterwards quan-

tizing the angles ψ and φ that characterize those matrices with bψ
and bφ bits, respectively. As precoding design is performed at the

transmitter, the presence of limited feedback information is going

to cause the BD precoder to leak some interference between users,
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Fig. 1: Sum throughput as a function of the SNR for different feed-

back rates.

thus degrading the overall system performance. The effect of this

leakage is twofold: on the one hand, in the noise limited regime,

the SNR in every carrier is (almost surely) going to decrease, thus

increasing the FER; on the other hand, in the interference limited

regime, the transmitter is not going to be aware of the amount of

inter-user interference, which causes him to overestimate the SNR

values and, in consequence, select an MCS which is not convenient.

The rate of each user was penalized and set to 0 in those cases where

the actual FER was greater than p0 to take into account these mis-

classified samples (i.e., the cases where a MCS is selected and turns

out not to meet the FER constraint). Note that this effect creates

even more degradation than the well-known ceiling for MU-MIMO

capacity with constant feedback rate [21].

In Figure 1 we see that for the perfect CSI case the sum through-

put increases as the SNR increases. The effect of imperfect CSI is

an error floor in the high SNR regime: for the (bψ, bφ) = (4, 6) case

(which is intended for single user feedback) and (bψ, bφ) = (5, 7)
we see that the throughput even decreases with increasing SNR val-

ues due to the mismatch in MCS selection. For the highest feedback

rate or lower SNR values the effect is much less noticeable, which

shows the importance of selecting the feedback rate depending on

the SNR operating region. In Figure 2 we see the evolution of the

FER with the average SNR. In this case, both the perfect CSI and

the highest rate feedback can be seen to meet the FER constraint,

while the FER in the two other cases grows up to almost 1. Note that

this growth in the FER is not caused by errors in the classifier, but

by the mismatch between the feature set and the actual SNR values

due to limited feedback precoding. In particular, the feature set did

not incorporate the codebook size or account for quantization error;

incorporating feedback explicitly is a topic of future work.

5. CONCLUSION

In this paper we proposed an adaptation algorithm for MU-MIMO-

OFDM. In this case, the MCS selection problem is coupled with

user selection, precoding and equalization, which makes this sce-

nario specially challenging. We proposed a machine learning based

algorithm to solve this problem, and evaluated its performance in a

4
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802.11ac with limited feedback. Future work includes modifying

of the learning algorithm to take into account the degradation due

to limited feedback precoding, studying the effect of time-varying

channels, optimizing the feature set selection, and transforming the

current learning scheme into an online procedure. Also, the devel-

opment of a standard benchmark for comparison with other LA ap-

proaches remains a subject of future work.
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