EUSIPCO 2013 1569743611

OPTIMAL TIME FREQUENCY ANALYSIS OF MULTIPLE TIME-TRANSLATED LOCALLY
STATIONARY PROCESSES

Johan Brynolfsson and Maria Hansson-Sandsten

Lund University,
Mathematical Statistics, Centre for Mathematical Sciences,
Box 118, SE-221 00 Lund, Sweden.
johanb@maths.Ith.se, sandsten @maths.Ith.se

ABSTRACT

A previously proposed model for non-stationary signals is
extended in this contribution. The model consists of mul-
tiple time-translated locally stationary processes. The opti-
mal Ambiguity kernel for the process in mean-square-error
sense is computed analytically and is used to estimate the
time-frequency distribution. The performance of the kernel
is compared with other commonly used kernels. Finally the
model is applied to electrical signals from the brain (EEG)
measured during a concentration task.

Index Terms— Time frequency analysis, Locally station-
ary process, Optimal Ambiguity kernel, EEG.

1. INTRODUCTION

The paper treats estimation of the Wigner spectrum of Gaus-
sian stochastic processes using the quadratic class of random
time-frequency representations. We study the minimum mean
square error estimation kernel and restrict to processes that
have locally stationary covariances in Silverman’s sense, [1,
2, 3]. There are other definitions of locally stationary pro-
cesses to be found in literature, e.g. [4], but the locally station-
ary process (LSP) as defined by Silverman has a covariance
function which is a multiplication of a covariance function
of a stationary process and a time-variable function giving it
useful separability features.

The mean square error (MSE) optimal kernel for non-
stationary processes was first derived by Sayeed and Jones [5]
and in [6] the optimal kernel for a LSP in Silverman’s sense in
the case of Gaussian covariance and time-variable functions
has been derived.

An extension of the LSP model is presented in this paper,
making it more useful when studying real life signals. The
set of LSPs is parameterized and can be used to model signals
ranging from non-stationary to stationary and can thereby be
used to represent a wide variety of natural signals, such as
speech or electrical brain activity, [7].
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Whereas a LSP consists of one single component we al-
low the extended model to contain multiple components cen-
tered at different times.

The paper is organized as follows. In section 2 we state
the definition of a multiple time translated locally stationary
process. In section 3 we show the definitions of the Wigner
spectrum and the Ambiguity spectrum and how they are re-
lated. We derive the optimal Ambiguity kernel in section 4
and compare the performance with other kernel functions in
section 5. Finally we apply the model to EEG signals in sec-
tion 6 and state our conclusions in section 7.

2. MULTIPLE TIME TRANSLATED LOCALLY
STATIONARY PROCESSES

Definition 1 A zero-mean second-order continuous-time ran-
dom process X (t) is called a Locally Stationary Process (in
the wide sense) if its covariance function can be written on
the form

Tm(th) :(I(t) 'T(T)7 (D

where q (t) may be any positive valued function such that
[la(t)|?dt < oo, (or a positive constant), and v (T) must
Julfill the properties of a stationary covariance function [1].

Since this is a unimodal model we want to extend it to
contain multiple components which we allow to be centered
at different times.

Definition 2 The Multiple Time Translated Locally Station-
ary Process (MTTLSP) is defined as a stochastic process with
the covariance function

N
re(t,7) = Zaj g (t) -5 (1), 2)

where a; is a positive valued scaling factor and N is the num-
ber of components in the process.

We will also restrict the analysis to the class of MTTLSP
where the ¢ and r functions are Gaussian on the form



Five realizations of MTTLSP.
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Fig. 1. Realizations of a slow oscillating part centered around
t = —2 and a faster oscillating part centered around ¢t = 1.
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and where ¢; > 1 [6]. When ¢; >> 4, r;(7) decreases
quicker than ¢;(7) and we approach a stationary process as
¢j — oo. The opposite extreme with ¢; — 1 give maximal
non-stationarity within the model. The parameter f; is a fre-
quency scaling factor. Realizations of MTTLSP can be seen
in figure 1 where the process is sampled at a frequency of
50 Hz and consists of two components. The first with non-
stationarity parameter ¢; = 5, frequency scaling f; = 1 and
a time-translation of ¢; = —2 seconds. The second compo-
nent has the parameters c; = 15, fo = 0.8 and to = 1. Both
components have unit amplitude a; = a2 = 1.

3. WIGNER SPECTRUM

A time-frequency estimate in the quadratic class is written

WQ(t f)= //AX v, T)p(v, T)e —i2n(rf- t”)drdy )

using the Ambiguity kernel, ¢(v,7), and where the corre-
sponding Ambiguity spectrum of a process X (t) with covari-
ance function r,, is defined by

E{Ax(,n)} = E{/x(t+7/2)me—i27fwdt}
= /rx(t,f)e*i%t”dt Q)

Throughout the paper E {-} will denote expected value, 7 is

the imaginary unit and X (¢) will denote the complex con-
jugate of X (¢). The Ambiguity spectrum is related to the
Wigner spectrum, [8, 5, 9],

E {/ X(t+ 7/2)me*i2”f7d7}

= /rx (t, T)e_i27rf7d7-. 6)
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All integrals are assumed to reach from —oo to co.

4. OPTIMAL AMBIGUITY KERNEL OF A MTTLSP

In this section we will derive the global optimal Ambiguity
kernel of MTTLSP, meaning that we don’t allow the kernel to
depend on time or frequency, only time- and frequency lag.
Note that this means that the kernel is invariant to transla-
tions of the whole system in both time and frequency. We
will also assume the process is circularly symmetric, mean-
ing that E{z(t)z(s)} = 0. The optimal Ambiguity kernel for
a non-stationary process, in the MSE sense X (t), was derived
in [5]. Assuming the process is observed noise free, the mean
squared error optimal kernel can be formulated as

bopt = arg 1nf / E{|Ax(w,m)é(v,T)

—E{A X(u, Y } drdv, %)

where the solution, if it exists, can be stated as

B {Ax(, )}
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Assume that X (t) is a MTTLSP giving,

. 2
/ re(t, T)e_l2mltdt‘

N .
- / (72 ajq; (t) rj(T)) e~ i2mut gy
=1

d)opt (Va T) =

|E{Ax@ D} =
2

N 2
= |2 aQ;w)rj(m)]| , ®
j=1

where Q;(v) := Fi, (q(t)) and F represents the Fourier
transform. Now we go to the more laborious denominator.
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As X is a zero mean Gaussian stochastic process, we can
make use of Isserlis’ theorem [10] which states that

E{zjzo} E{xgzy}
+E{z 23} E{zoz4} + E{z124} E{2023}.

Using this we can represent

E{zjzox3ay} =

E{|Ax(n, 7'} = B,7) + C(v,7) + D7), (10)

and derive the different terms separately.
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Continue then with C(v, 7).
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Change of variables ¢, = % and t, = t; — to gives that
the integral now can be expressed as
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where the notation ¢ (7) = qx(—7) is used. Assuming the
process X is circularly symmetric, part D (v, 7) is equal to
zero as it contains no complex conjugation.

2
Denoting EAx = Zjvzl a;Q;(v)r;(r)| , the optimal

Ambiguity kernel can so far be found as
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Assuming that f; and c; are real-valued Vj, we have that
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Plugging this result into equation 14 we have arrived to
the analytic expression of the MSE optimal Ambiguity kernel
of a MTTLSP process.

5. COMPARISON WITH OTHER KERNELS

The MSE is calculated for a set of commonly used kernels to
compare the performance and show that the MTTLSP kernel
in fact performs better than existing methods. To make a fair
comparison we optimize all methods over their respecting
parameters. The methods we choose to compare with are the
Wigner spectrum (i.e. using no kernel), the Choi-Williams
kernel ¢pcw = exp(—ar?v?) [11], the Hanning window



(corresponding to the short-time Fourier transform) and the
LSP optimal kernel (for one single component). When using
the Hanning window we transform it into Ambiguity kernel
functions [12]. The MSE is then calculated for each discrete
(v,7) and the expected mean of the MSE (MMSE) is then
calculated over the time span of the process and the Nyquist
frequency. Assume that we have an observed process with
Nops samples with a sampling frequency F and the dis-
crete Fourier transform is calculated using zero padding up to
Nppr samples. The MMSE will hence be calculated as

Nops NFFTZZE{‘AX v, T)
—EAx(v,7)|? }, (18)

MMSE =

using the analytic expressions for the expected ambiguity
functions derived in equations (5)-(17). The kernels are
evaluated on MTTLSP with two components where the sta-
tionarity parameters are ¢; = 7 and co = 3, the scaling
frequencies f; = fo = 1 Hz, the time translations t; = —1.3
and to = 1.7 seconds and both components had maximum
instant variance equal to one. The sampling frequency was
30 Hz. Results of the evaluations are presented in table 1.

The Wigner-Ville estimate generated the highest MMSE
which is not surprising as there will be significant cross terms
caused by the multiple components.

The Choi-Williams kernel was optimized over the param-
eter o giving a minimum MMSE for a@ = 685, meaning we
are approaching the Wigner-Wille spectrum. The reason for
the high value of « is due to the shape of the Choi-Williams
kernel where, when used on MTTLSP processes, as a higher
cross-term reduction renders also renders an auto-term reduc-
tion.

The Hanning window was optimized over window length.
The best MMSE was found for a 10 sample long window.

As expected the MTTLSP kernel has the lowest MMSE
closely followed by the LSP kernel. The reason for the
quite small difference in MMSE is largely explained by that
we only evaluate on a dual component process. To show
that MTTLSP is still an improvement over the original one-
component LSP model we calculate the MMSE of a 10 com-
ponent process with stationarity parameters, c}s, between 2
and 11; scaling frequencies, f]’-s, between 0.1 and 1.9; time
translations, tgs between -2 and 2 seconds and scaling fac-
tors a;-s between 0.1 and 1.9. In this case the MMSE of the
optimal LSP Ambiguity kernel gave a MMSE of 81.7 - 1073
whereas the MMSE of the optimal MTTLSP kernel was
69.6 - 10~3; roughly 17% better.

6. EEG ANALYSIS USING MTTLSP KERNELS

The set of locally stationary processes have previously been
proposed as a model of EEG signals [13]. During an psycho-
logical experiment participants were asked to quickly identify

Method MMSE
MTTLSP 42-1073
Wigner-Ville | 42.7-1073
Choi-Williams | 7.1-1073
Hanning 85-1073
LSP 43-107°

Table 1. Performance of kernels on a MTTLSP process
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Fig. 2. Mean response from one of the participants in the trial.

letters appearing on a screen. Simultaneously their brain ac-
tivity was recorded using EEG electrodes. A mean response
from one of the participants can be seen in figure 2. The
brain responses are assumed to be realizations of the same
MTTLSP every repetition of a certain trigger. If we have M
recordings and denote the m : th brain response x,,(t) we
can estimate the instantaneous covariance as

Py (t, T) me (t+7/2)Tm(t —7/2).

m=1

The estimated covariance matrix can be seen in figure 3. In
the top right corner of the same figure one can see the diagonal
of the matrix where time-lag is identically zero. Assuming
the EEG signal is a MTTLSP, one then observes the sum of
time-translated Gaussian functions (¢;(¢) in eq. (3)) as 7 =
0 gives that 7;(7) = 1. The lower three plots in the figure
show the anti-diagonal across three main peaks (r;(7) in eq.
(3)). The similar principle holds for the anti-diagonals, where
g;(t) = 1 for each respective component and one therefore
only observe 7; (7). We then fitted a model consisting of three
components which can be seen as red dashed lines in the plot.
The estimated scaling frequencies for the three components
were f1 = 15.7, fo = 37.2 and f3 = 49.4 and the stationarity
parameters were estimated to ¢c; = 1, co = 1.16 and c3 =
1.18.

Note that, in calculating the optimal kernel, we assumed
the signal to be circularly symmetric. As the real valued EEG
signal does not fulfills this, we use the Hilbert transform to
get the corresponding complex-valued analytic signal which
may be considered approximately circularly symmetric.

xo(t) = x(t) + i [H] (¢), (19)

where H is the Hilbert transform. We then estimated the
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Fig. 3. The estimated covariance function of the EEG signal
can be seen in the upper left corner. In the upper right corner
is the diagonal of the matrix in blue and the MTTLSP model
in dashed red. The three lower plots show the anti-diagonals
across each of the three components in blue and the model in
dashed red.

Wigner spectrum using the MTTLSP kernel with the param-
eters fitted to the data. The resulting spectral estimate can
be seen in figure 4 together with an spectrum estimated us-
ing a Hanning kernel. Note that center of mass is located at
a higher frequency in the Hanning spectrum due to too much
smoothing.

7. CONCLUSIONS

An extended model of locally stationary processes were pre-
sented and the MSE optimal Ambiguity kernel was derived.
It was also shown that when estimating the frequency content
of the process the said MTTLSP Ambiguity kernel had sig-
nificantly better performance. By giving an applied example
we want to show the usefulness of this new model.
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