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ABSTRACT

A wireless acoustic sensor network is envisaged where each

node estimates a locally observed speech signal that has been

corrupted by additive noise. The nodes perform noise reduc-

tion by means of the distributed adaptive node-specific sig-

nal estimation algorithm in a tree topology (T-DANSE). The

T-DANSE algorithm inherently relies on a network that has

been pruned to a tree topology where a single node has been

designated as the root node. We will demonstrate that, due to

the data-driven flow of the T-DANSE algorithm and unavoid-

able errors in the estimation of certain second-order statis-

tics, the selection of the root node and the pruning of an ad-

hoc network to a tree topology play an important role in the

overall performance of the speech enhancement algorithm in

terms of noise reduction as well as input-output delay. With

this in mind we introduce the concept of eigenvector central-

ity with a weighted adjacency matrix that can be used to se-

lect a root node, as well as to prune an ad-hoc network to a

specific tree topology that yields good speech enhancement

performance when applying the T-DANSE algorithm.

Index Terms— Distributed signal estimation, wireless

acoustic sensor networks, network topology, eigenvector cen-

trality

1. INTRODUCTION

Acoustic noise reduction techniques aim to estimate a desired

speech signal that has been corrupted by noise. While single
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microphone techniques may introduce speech distortion in or-

der to reduce the noise, these effects can be mitigated by the

use of multi-microphone techniques.

Multi-microphone noise reduction algorithms are able to

overcome the limitations of single microphone techniques not

only from the use of added channels (auxiliary microphones)

but also because they are able to capture increased spatial in-

formation due to the spacing of the microphones [1, 2].

In order to further increase the spatial diversity of the in-

formation collected at the microphones, noise reduction algo-

rithms may be implemented to work with multiple devices, or

nodes, that each contain a set of microphones and are dis-

tributed throughout the sensing environment. This type of

spatially distributed microphone network creates what is re-

ferred to as a wireless acoustic sensor network (WASN).

In this paper we envisage a WASN where each node es-

timates a locally observed speech signal that has been cor-

rupted by noise. It performs this estimation by means of the

distributed adaptive node-specific signal estimation algorithm

in a tree topology (T-DANSE), where each node linearly com-

bines (i.e. fuses) its own signals with signals from neighbor-

ing nodes before forwarding them to the next node. The T-

DANSE algorithm was first introduced in [3], however a spe-

cific application in terms of a WASN has not been explored.

In the previous implementation of the T-DANSE algo-

rithm it was assumed that the network had been pruned to

that of a spanning tree. However due to the so-called data-

driven flow in the T-DANSE algorithm, the way that the tree

topology is formed, especially the selection of the root node,

is shown to have a significant impact on the performance of

the T-DANSE algorithm. This is mainly due to the fact that

there are estimation errors in certain second-order statistics

estimates at each node which tend to become more prevalent

with decreasing input signal-to-noise ratio (SNRIN).

Since all signals have to pass through the root node, it is

important that the signal fusion rule at this node is correctly

estimated, which is only possible if the SNRIN at the root node

is sufficiently high. A similar statement (be it to a lesser de-
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gree) holds for the direct neighbors of the root node, as well as

their respective neighbors, etc. Furthermore, to minimize the

input-output delay within the network, the root node should

be close (in terms of number of hops) to any other node in the

network.

Before the T-DANSE algorithm begins we assume that

the network initially has an ad-hoc topology where each node

only communicates with nearby nodes. We introduce the con-

cept of eigenvector centrality with an SNRIN weighted adja-

cency matrix which will allow us to identify a suitable root

node and to prune the network to a tree topology, which sat-

isfies the earlier mentioned properties. A particularly conve-

nient property of the eigenvector centrality is that it can be

computed in a distributed fashion.

The paper is organized as follows: In Section 2 the T-

DANSE algorithm is reviewed along with its data-driven flow.

The estimation of signal statistics is given in Section 3 and

what impact these along with root node selection have on

the performance of the T-DANSE algorithm. In Section 4 a

weighted eigenvector centrality measure is introduced which

is used in pruning an ad-hoc network to a tree topology as well

as root node selection. Section 5 contains simulation results

and conclusions are given in Section 6.

2. T-DANSE ALGORITHM

AWASN is envisaged that contains J nodes with node k hav-

ing Mk, k ∈ 1 . . . J microphone signals. We assume that the

network has a tree topology, i.e., it cannot contain any loops.

The received microphone signals, at node k, can be repre-

sented in the short-time Fourier transform (STFT) domain at

a given frequency ω and time t as

yk,m(ω, t) = xk,m(ω, t) + nk,m(ω, t), m = 1 . . . Mk (1)

where x is the desired speech component and n is an additive

uncorrelated noise component. For ease of exposition the fre-

quency and time indices will be omitted bearing in mind that

the following operations take place in the STFT domain.

2.1. T-DANSE Basic Operation

In the T-DANSE algorithm the goal of each node in the

WASN is to estimate its own node specific desired speech

signal, dk, which, without loss of generality, is assumed to

be the speech component in the first microphone of the node,

dk = xk,1. It accomplishes this estimation by applying a

linear filter that fuses all of its input signals into a single out-

put signal that serves as an estimate for dk. The set of input

signals consists of the node’s own Mk microphone signals as

well as (fused) signals obtained from neighboring nodes (see

further). In order to propagate information throughout the

network, the node also broadcasts this output signal to other

nodes in its neighborhood.

The remarkable aspect of the T-DANSE algorithm is that

the linear fusion rules at the different nodes converge to an

equilibrium setting that yield node-specific signal estimates

identical to those obtained when each node would have access

to all the microphone signals in the network1. We briefly out-

line the T-DANSE algorithm and the reader is referred to [3]

for a more in depth discussion as well as convergence proofs.

Note that a full understanding of the T-DANSE is not intended

and only key concepts will be outlined.

We denote the neighbors, or the set of nodes that are con-

nected to node k excluding node k, as Nk and the broadcast

signals from these nodes as zq, ∀q ∈ Nk, which are con-

tained in a stacked vector zk
−k

where the −k indicates that

node k’s zk signal is not included. We will define these zq

signals in the sequel (see equations (5) and (6)).

Instead of decompressing the received signals from other

nodes, node k applies a scaling parameter to each element

of zk
−k

defined as gkq, ∀q ∈ Nk, which are contained in a

stacked vector gk
−k

.

Each node updates its node-specific parameters per node,

wkk and gk
−k

, in an iterative fashion by solving the local

node-specific linear minimum mean square error problem,

[

wi+1

kk

gi+1

k
−k

]

= arg min
wkk,gk

−k

E







∣

∣

∣

∣

∣

dk −

[

wkk

gk
−k

]H [

yk

zk
−k

]

∣

∣

∣

∣

∣
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(2)

where E{.} denotes the expectation operator, the superscript

i denotes the iteration index andH is the Hermitian transpose.

For ease of exposition we denote ỹk = [yT
k zT

k
−k

]T where x̃k

is defined similarly and so contains the desired speech compo-

nents of ỹk. The solution to (2) is given as the multi-channel

Wiener filter (MWF)
[

wi+1

kk

gi+1

k
−k

]

= R−1

ỹkỹk
Rx̃kx̃k

ẽk (3)

where Rỹkỹk
= E{ỹkỹ

H
k }, Rx̃kx̃k

= E{x̃kx̃
H
k }, and ẽk is

a vector with the first entry equal to 1 and all other equal to 0,

which selects the first column of Rx̃kx̃k
. We will discuss in

Section 3 how to estimate Rỹkỹk
and Rx̃kx̃k

. The estimated

desired signal at each node is then given as (cfr. (2))

dk = (wi+1

kk )Hyk + (gi+1

k
−k

)Hzk
−k

. (4)

In the T-DANSE algorithm it can be shown that the MWF

(3) and the estimated desired signal (4) at each node con-

verge to the same solution as if the node had access to all

of the microphone signals in the WASN [3]. In Section 3 we

will discuss how estimation errors affect the convergence of

T-DANSE algorithm and in Section 4 how to use this infor-

mation to reduce the effect of these estimation errors through

proper pruning of the initial ad-hoc network to a tree topol-

ogy.

1It is noted that in theory the T-DANSE algorithm converges to the same

solution as if the nodes have access to all microphones in the network. How-

ever in practice, due to errors in the estimation of the signal statistics as well

as non-stationarities, differences between the two solutions normally occur.
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2.2. Data-driven flow in T-DANSE

In order to pass information throughout the network we first

assume that the broadcast signal from node k is given by the

following fusion rule

zk = wH
kkyk +

∑

q∈Nk

g∗kqzq. (5)

where ∗ indicates the complex conjugate. In using (5), how-

ever, it was shown in [3] that indirect feedback becomes a

problem in the WASN. If the WASN contains feedback, i.e.,

the signals node k receives from its neighbors contain contri-

butions from node k’s own signals, then the T-DANSE algo-

rithm is unable to converge to the optimal solution.

In order to avoid feedback the nodes can transmit what is

referred to as transmitter feedback cancellation (TFC) signals

where it is assumed that each node pair has a reserved point-

to-point communication link. We define the signal which is

transmitted from node k to node q as

zkq = wH
kkyk +

∑

l∈Nk\{q}

g∗klzlk

= zk − g∗kqzqk. (6)

where zqk is the signal which is transmitted from node q to

node k. Note that zkq consists of a linear combination of the

microphone signals of node k and the z-signals obtained from

its neighbors with zqk excluded.

It is readily apparent that the transmitted signal from node

k to node q relies on the transmitted signal from node q to

node k. In order to rectify this dead-lock we discuss how the

T-DANSE algorithm can intuitively remove this by means

of backward substitution from the data-driven flow in the

WASN.

2.3. Fusion Flow

The fusion flow is initiated at the leaf nodes, i.e., nodes with

a single neighbor. Every time a new STFT frame can be com-

puted from the new microphone signal observations, the leaf

nodes fuse their local microphone signals by means of (6).

Note that since a leaf node has a single neighbor (6) reduces

to zk = wH
kkyk.

Once a non-leaf node has received all of the signals from

its neighbors (except for one) it fuses its microphone signals

with its received signals by means of (6). This continues until

all of the information arrives at the most central node, which

is referred to as the root node.

2.4. Diffusion Flow

The diffusion flow is initiated once all of the fusion flow sig-

nals have reached the root node. The root node initiates the

diffusion flow by transmitting the TFC-signals as given in (6)

to each of its neighbors. This continues through the neigh-

boring nodes until the data is spread out through the entire

network, i.e., ending at the leaf nodes.

3. ESTIMATION OF SECOND-ORDER STATISTICS

The MWF (3) calculated at each node not only relies on the

perfect estimation of the second-order statistics of the re-

ceived signal, Rỹkỹk
, but also of the unobservable desired

speech signal, Rx̃kx̃k
. In practice, however, the second-order

statistics can only be imperfectly estimated by collected ob-

servations denoted as R̃ỹkỹk
and R̃x̃kx̃k

. For this estimation

we rely on the fact that speech has an on-off behavior which

is discerned by a so-called voice activity detector (VAD).

The VAD is considered active during segments when

speech+noise is present in which the so-called speech+noise

correlation matrix can be estimated in a recursive fashion by

means of an exponential forgetting factor, i.e.,

R̃ỹkỹk
[t] = λR̃ỹkỹk

[t − 1] + (1 − λ)ỹk[t]ỹk[t]H (7)

where 0 < λ < 1. The noise correlation matrix R̃ñkñk
is

estimated in a similar fashion during noise only frames when

the VAD is considered inactive. Since it is assumed that the

desired speech and noise are uncorrelated the second-order

statistics of the desired speech signal may be estimated by

R̃x̃kx̃k
= R̃ỹkỹk

− R̃ñkñk
. (8)

Notice that when a node k has low SNRIN microphone sig-

nals the desired speech signal correlation matrix is poorly

estimated resulting in large relative errors on the entries of

R̃x̃kx̃k
.

In [4] it was shown that when using imperfectly estimated

correlation matrices and, if the errors are considered small

with respect to Rñkñk
, the MWF becomes the optimal filter

given by (3) and an extra bias term. We therefore assume that

nodes which contain microphones with larger SNRIN tend to

have smaller estimation errors, which leads to smaller errors

in the optimal filter (3).

We see that, due to the date-driven flow of the T-DANSE

algorithm, if a root node is chosen with a low SNRIN this not

only places a bias term on its own estimation but also on the

TFC-signals that the root node transmits to its neighbors. This

in turn effects the estimation within those nodes, and their

respective neighbors, etc., i.e., the error ripples throughout

the whole network. Therefore since all data is fused through

the root node it is important to have a good estimation of the

signal statistics in the root node in order to decrease the added

bias term as much as possible.

It is with these low SNRIN nodes and the data-driven flow

of T-DANSE in mind that we look to not only pick a root

node with a high SNRIN, thereby reducing the errors spread

throughout the network, but also construct the entire tree

topology based around this idea.

4. WEIGHTED EIGENVECTOR CENTRALITY

In Section 3 it was assumed that nodes with low SNRIN tend

to have larger estimation errors in the estimated correlation

3
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matrices which increases the bias term on their calculated

filters. We see that in the T-DANSE algorithm this effect

is compounded due to the fact that the signals are linearly

compressed with these imperfect filters and fused with sig-

nals from other nodes. We therefore use the assumption that

nodes with high SNRIN have lower estimation errors to help

prune an ad-hoc network to a tree topology while trying to

keep the highest SNRIN toward the root node and nodes with

low SNRIN toward the leaf nodes.

We first assume, that before the commencement of the

T-DANSE algorithm, the network is connected in an ad-hoc

fashion, i.e., nodes only communicate with the neighbors that

fall within their transmission range. We define the so-called

adjacency matrix A from the original ad-hoc topology as

akq = aqk =

{

1 if k is connected to q

0 otherwise
(9)

which categorizes the links of the individual nodes.

Our first aim is to obtain a small input-output delay, i.e.,

the maximum distance between two nodes (in number of

hops) should be as small as possible. This means that the tree

should be highly branched, i.e., we need to find a root node

which has many neighbors who - at their turn - also have

many neighbors, etc. An interesting approach to identify

such a potential root node is based on the so-called eigen-

vector centrality, which calculates the centrality of each node

[5]. It is based on the principle that a node should get a high

eigenvector centrality if it has many neighbors who - at their

turn - also have a high eigenvector centrality. This leads to

the following definition for the eigenvector centrality of node

k [5]

ck =
1

α

∑

q∈Nk

cq, ∀k ∈ J (10)

where α is an arbitrary normalization factor, which can be

re-written in terms of the adjacency matrix A as [5]

αc = Ac. (11)

It can be shown that if only non-negative coefficients are al-

lowed in c then there is a unique solution to (10) given by

the principle eigenvector of A that corresponds to the largest

eigenvalue αmax. It is important to note that this principle

eigenvector can easily be computed in a distributed fashion

(see [5]).

A root node is then selected which corresponds to the

node with the highest eigenvector centrality. The ad-hoc net-

work may then be pruned to a tree topology by connecting

nodes based on their eigenvector centrality, i.e., after the root

node is selected the node with the next highest eigenvector

centrality is connected, if a link exists, where the process con-

tinues until all nodes that were available in the ad-hoc network

are included in the tree topology. Note that there is no as-

sumption on the maximum number of connections per node,

but this can easily be included as a constraint in the algorithm.

However, in terms of the estimation problem at hand, the

eigenvector centrality of a node may not lead to a good choice

for the root node, e.g., a node may have a low SNRIN and

have many connections with other nodes which, if chosen as

the root node, will affect the performance of the T-DANSE

algorithm.

We therefore propose the use of a weighted adjacency ma-

trix to not only take into account the eigenvector centrality of

a node but also use the SNRIN in order to select a good root

node. This will also be used to prune the original ad-hoc net-

work to a tree topology. Similar weighting strategies have

been studied in [6] which rely only on the degree centrality of

a node and SNRIN was used for designing topologies in [7].

We first assume that the microphones of a node have a

similar SNRIN, where the SNRIN at node k is denoted as

SNRIN,k and is defined as the ratio of signal power to noise

power. We define a new weighted eigenvector centrality

based on the following principle. A node should receive a

high weighted eigenvector centrality if it has many neigh-

bors with a high-SNRIN, who also have many neighbors

with high-SNRIN, etc. Furthermore each node’s weighted

eigenvector centrality should also be weighted with its own

SNRIN in order to avoid that a low-SNRIN node surrounded

by high-SNRIN nodes be given a high weighted eigenvector

centrality. This leads to the following definition of a weighted

eigenvector centrality,

ck =
1

α
SNRIN,k

∑

q∈Nk

cq, ∀k ∈ J. (12)

This weighted eigenvector centrality can again be shown

to have a unique solution given by the principle eigenvector of

a weighted adjacency matrix ASNR [5]. In order to construct

the weighted adjacency matrix, ASNR, corresponding to (12),

a diagonal matrix, DSNRIN
, is constructed where the diagonal

entries are equal to the SNRIN of the nodes2

DSNRIN
=







SNRIN,1 . . . 0
...

. . .
...

0 . . . SNRIN,J






. (13)

The weighted adjacency matrix can then be given as

ASNR = DSNRIN
A. (14)

The root node is selected as the node with the highest

weighted eigenvector centrality found by replacing A by

ASNR in (10), which can again be easily computed in a dis-

tributed fashion. The tree topology is then formed in a similar

fashion where nodes are connected based on their weighted

eigenvector centrality.

2Since only non-negative coefficients guarantee a unique solution to (12)

the SNRIN is given as the ratio of signal power to noise power and not the log

of the ratio (dB).
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(a) Ad-hoc network with sens-

ing radius per node with desired

speech source and noise source.
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(b) Ad-hoc network topology.
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(c) Tree pruning using eigen-

vector centrality.
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(d) Tree pruning using SNR

weighted eigenvector centrality.

Fig. 1. Original sensing environment and network topologies.

5. SIMULATIONS

We assume that the ad-hoc network is initially formed as in

Figure 1(a) where there are 10 nodes each with a sensing ra-

dius of 2.5m. The initial topology of the ad-hoc network is

given in Figure 1(b). Each node is assumed to have 3 mi-

crophones that are placed equidistantly around the center of

the node at a radius of 1 cm. A single target speech source

� (denoted by S) is present together with an additive white

noise source ∗ (denoted by N). Uncorrelated white noise that

is 10% of the average power of the noise source is added to

each microphone which is representative of sensor noise.

The room dimensions are 5x5x5m where a reflection co-

efficient of 0.2 is used for all surfaces. A STFT block length

of L = 128 is used with a sampling frequency of fs = 8000
Hz. The estimation of the speech+noise and noise correlation

matrices uses an ideal VAD.

Before starting the T-DANSE algorithm the root node is

selected as the node with either the highest eigenvector cen-

trality (10) or SNRIN weighted eigenvector centrality (12).

The values for the different eigenvector centrality measures

are given in Table 1 along with the corresponding SNRIN

of each reference microphone and the nodes selected as the

root node are in bold. While the SNRIN of the reference mi-

crophones is given in dB in Table 1, the values used in the

weighted adjacency matrix (14) are not in dB as explained in

Section 4. The ad-hoc network is then pruned to a tree, Figure

1(c) and Figure 1(d), by using the method given in Section 4.

Node SNRIN E.C. SNROUT W.E.C. SNROUT

1 -14.63 0.161 3.26 0.001 3.64

2 -3.32 0.303 7.63 0.027 8.65

3 0.96 0.473 10.44 0.282 10.67

4 -3.33 0.273 6.15 0.027 7.23

5 -1.25 0.381 8.72 0.102 10.63

6 -0.84 0.291 5.53 0.180 7.70

7 5.16 0.403 12.68 0.641 13.43

8 -0.82 0.133 7.59 0.097 8.22

9 5.24 0.356 11.20 0.648 13.01

10 0.02 0.210 8.65 0.194 8.77

Table 1. SNRIN (dB), eigenvector centrality (E.C.), SNROUT (dB)

using E.C., SNRIN weighted eigenvector centrality (W.E.C.) and

SNROUT (dB) using SNRIN W.E.C. for each node. Root nodes for

each centrality measure are given in bold.

Notice that in using the weighted eigenvector centrality

to prune the ad-hoc network the output signal-to-noise ratio

(SNROUT) performance on all the nodes increases. In using

the weighted eigenvector centrality the root node was selected

as the node with the highest SNRIN which also has higher

SNRIN nodes connected to it.

6. CONCLUSIONS

The T-DANSE algorithm was presented for use in a WASN.

Due to the errors in the estimation of the second-order signal

statistics it was shown that the selection of the root node is

of paramount importance. The method of using a so-called

weighted eigenvector centrality was presented to not only se-

lect a good root node for the network but to also prune an

already existing ad-hoc network to a tree topology. Simu-

lations showed that using a weighted eigenvector centrality

compared to that of an unweighted eigenvector centrality not

only changed the pruned network topology but also improved

the performance of the T-DANSE algorithm.
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